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I. Introduction

There are signi�cant barriers to Bayesian or maximum likelihood estimation (MLE) in many

situations outside one standard approach of estimating after perturbation. If these barriers can

be overcome, Bayesian methods have many advantages. They allow the use of informative priors,

perhaps derived by microdata to guide estimation and provide distributional information on pa-

rameters. They also give distributional insight on parameters. Even in the case of MLE, it has

e�ciency advantages over alternatives like method of simulated moments and modeling advantages

over maximum simulated likelihood. Furthermore, a posterior approach to either Bayesian or max-

imum likelihood estimation is a global technique, thus in the limit all modes of the distribution will

be explored and the technique can �nd a global maximum rather than a local maximum.

Discussing the barriers, �rst, Metropolis Hastings Markov Chain Monte Carlo (MH-MCMC)

estimation of Bayesian posteriors, particularly of slow state-of-the-art models, is computationally

ine�cient. For example, even in a small HANK model, the size of the latent state space could be in

the thousands making a �ltering likelihood approach to Bayesian estimation intractable. For this

reason, most heterogenous agent models are calibrated (Liu and Plagborg-M�ller, 2021), but if they

are estimated in a likelihood manner, state space dimension reduction techniques are used at the

expense of accuracy (Ahn et al., 2018). Second, even if one doesn’t have a large state space, MH-

MCMC converges on the posterior extremely slowly (Herbst and Schorfheide, 2015). Third, many

popular solution methods, like value function iteration or projection, don’t yield complementary

likelihood functions so conventional methods using MH-MCMC and MLE are o� the table.

Discussing the �rst barrier: the problem with heterogeneous agent model estimation is that the

Kalman �lter is a computational bottleneck when the state space is too large. Since heterogeneous

agent models often divide up one or more distribution state variable into many quantiles, the size

of the latent state space could be in the 1000s. Since Kalman �ltering’s computational complexity

scales with matrix multiplication, �ltering something that is approximately 20x larger than the

40 parameter latent space in Smets and Wouters (2007) model takes approximately 4500x more

compute. This means the traditional MH-MCMC or even maximum likelihood combined with a
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�ltering approach may become computationally intractable, even for small heterogeneous agent

models. The approach I propose estimates the posterior from simulations only, allowing one to

avoid �ltering and the likelihood function in general. Thus, this approach can estimate models with

almost unbounded latent state space size with small increases in computational cost.

Discussing the second barrier, it is well known that DSGE models are slow to converge using

RW-MCMC (Herbst and Schorfheide, 2014). Furthermore the development of other techniques like

variation inference have cast some doubt on adequate convergence of MH-MCMC techniques on

complex models (Mohammad-Djafari and Ayasso, 2009). Likewise, my results suggest that even

after 10 million samples from the Smets and Wouters (2007) model, it is unlikely that MH-MCMC

is fully converged as the posterior of many parameters do not include the ground truth parameter in

the support of the distribution. Because my simulation-based algorithm relies on density estimation

rather than sampling from the posterior, it has better behaved posteriors even after 150 thousand

samples from solving the model, almost two order of magnitude less samples, although each sample

takes longer to generate with my technique. Furthermore, if one uses multiple GPUs/CPUs for

estimation and simulation, the problem is nearly embarrassingly parallel. One can draw an analogy

to other global optimization approaches like TikTak (Arnoud, Guvenen and Kleineberg, 2019),

with my approach having the bene�ts of Bayesian or maximum likelihood estimation compared to

method of simulated moments (MSM). That being said, the proposed approach is almost certainly

slower than TikTak.

Discussing the third barrier: conventional approaches have downsides if the solution method

doesn’t yield a complementary likelihood function. If one cannot estimate via perturbation, Bayesian

and MLE estimation cannot be done with conventional MH-MCMC or even MLE. Thus options

with less attractive qualities are used. In this case, solved models are either calibrated, estimated

via MSM, or estimated in a simulated maximum likelihood fashion. Each approach has its own

drawbacks. First o�, none of these alternatives can handle incorporating posterior distributions or

prior information. Calibration is not an algorithmic approach so it lacks both rigour and quanti�-

cation tools like standard errors. MSM is not e�cient unless the global identi�cation criterion is

met, which is both unveri�able and unlikely. Adding in measurement error for maximum simulated
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likelihood makes it less realistic as practitioners often want to assume the error comes from eco-

nomic shocks and not measurement. One can resort to measurement errors with my method, but

in all of my examples, none were used.

I propose a method from machine learning that allows Bayesian and full information estimation

of models without a likelihood function. This also addresses �ltering computational bottlenecks

since avoiding the likelihood function avoids the use of �ltering. Since the approach is likelihood-

free, one can Bayesian/MLE estimate models solved via projection and value function iteration.

This includes non-analytic models with kinks that often require these solution approaches. This

approach allows the estimation of heterogeneous agent models whose large latent state spaces make

�ltering intractable without dimension reduction, even when the likelihood is available. Although

the method is more general, this paper focuses on the case of dynamic macroeconomic structural

models in a Bayesian setting. Finding the mode of the posterior with a uniform prior allows one

to derive MLE estimation from the Bayesian procedure as well. Econometrically, this approach

extends Kaji, Manresa and Pouliot (2020) to the Bayesian setting and when there is a time series

component that is not iid.

I next will discuss brie
y the Sequential Neural Posterior Estimation (SNPE) algorithm (Green-

berg, Nonnenmacher and Macke, 2019), (Tejero-Cantero et al., 2020) that can perform this likelihood-

free Bayesian and MLE estimation. SNPE uses a model little used in economics, the normalizing


ow (Rezende and Mohamed, 2015), which is a powerful conditional density estimator. Flows fa-

cilitate Bayesian estimation by learning the posterior conditional distribution P(� jx) trained on

samples from the joint, x; � � P(x; � ) = P(xj� )P(� ). One can think of SNPE as an extension of the

Kristensen and Shin (2012) approach to likelihood estimation, where they simulate data from the

joint via the prior and likelihood simulations. Then they use a kernel density estimator (KDE) to

estimate the likelihood function. In my case, I use a normalizing 
ow to replace their KDE, which

allows me to extend their result to full Bayesian inference and accommodate data with a latent state

space structure. The bene�ts of SNPE mainly stem from the use of the 
ow over traditional den-

sity estimators like the KDE. There are also alternative methods like SNRE (Durkan, Murray and

Papamakarios, 2020) which is discussed in the appendix and simulation-based inference combined
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with variational inference (Gl•ockler, Deistler and Macke, 2021).

The general approach around simulation-based inference has gained popularity in many �elds.

The approach is often used for Bayesian inference in machine learning (Durkan, Murray and Pa-

pamakarios, 2020), (Greenberg, Nonnenmacher and Macke, 2019). The approach has been used

in neuroscience (Boelts et al., 2021) and ecology (DiNapoli et al., 2021). The technique has also

become one of the leading estimation methods in many �elds of physics (Brehmer, 2021), (Cranmer,

Brehmer and Louppe, 2020).

II. Literature Review

This literature review will cover three topics: simulation-based methods in economics, the lit-

erature on solving dynamic models, particularly with kinks and discontinuities, and solution and

estimation of heterogeneous agent models. I will discuss MH-MCMC and machine learning back-

ground in the following sections.

II.A. Simulation-Based Models in Economics

I will give an overview of current simulation-based estimation and related approaches. Most of

the simulation-based likelihood and inference approaches are inspired by an approach like method

of simulated moments (MSM) (McFadden, 1989), (Pakes and Pollard, 1989), (Du�e and Singleton,

1990). Due to the di�culty of verifying the global identi�cation criterion there is a large interest in

developing more e�cient and robust estimators and algorithms where this is not a problem. Tech-

niques like maximum simulated likelihood, attempt to address this (Lerman and Manski, 1981),

although these techniques both have simulation bias (Hajivassiliou et al., 1997), (Haan and Uh-

lendor�, 2006) and typically require the use of measurement error. There has also been work on

using techniques from simulation-based likelihood estimation to solve dynamic models, particularly

in industrial organization (Keane and Wolpin, 1994). There is also literature on e�cient simula-

tion techniques using both indirect inference (Smith Jr, 1993), (Gourieroux, Monfort and Renault,

1993), and e�cient method of moments (Gallant and Tauchen, 1996).
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Simulation-based techniques in economics are e�cient when the model is well speci�ed, so much

of recent work has been done to improve robustness to misspeci�cation. One such avenue is e�cient

method of moment estimators using a spectrum of moments so the data is guaranteed to be in the

support of distributions spanned by the moments1 (Carrasco et al., 2007), (Altissimo and Mele,

2009). However, these methods have a di�cult time dealing with models with latent time structure.

Another approach is approximate Bayesian inference (Rubin, 1984) to estimate models solved via

value function iteration techniques, to estimate these models. However, in a well speci�ed model,

this approach is only approximately Bayesian, unlike the set of algorithms I propose.

One could even consider a particle �lter a simulation-based technique for deriving a likelihood

function given an intractable integral (Fern�andez-Villaverde and Rubio-Ram��rez, 2007), but this

approach only works with dynamic models that yield complementary state space representations

and requires a likelihood function at each point in time. Although the literature is more sparse,

there are papers that also perform simulated Bayesian inference (Flury and Shephard, 2011) (Herbst

and Schorfheide, 2014), extending particle �ltering for Bayesian inference. Other machine learning

approaches use techniques that have both robustness and e�ciency guarantees like GANs. Most

relevant to this paper, Kaji, Manresa and Pouliot (2020) whose GAN approach to structural mod-

elling open the door to robust and near e�cient point estimation using only simulations from the

model.

II.B. Solving Dynamic Models with Kinks

I will next discuss approaches to solve dynamic models, particularly models with kinks and

nonlinearities.

There are a variety of ways to solve dynamic macroeconomic models: perturbation, projection,

and value function iteration (Fern�andez-Villaverde, Rubio-Ram��rez and Schorfheide, 2016), (Judd

et al., 2017), of which only perturbation yields likelihood functions that allow Bayesian and MLE

estimation using conventional techniques. Perturbation works well when the policy function looks

1. There is also work in machine learning attempting to perform robust and e�cient moment estimation by using
a spectrum of moments, most well known is the Generative Moment Matching Network (Li, Swersky and Zemel,
2015)
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like a linear or low degree polynomial function. For methods that are highly nonlinear, with large

shocks (Terry, 2017), or even non-analytic, projection and value function iteration should be used.

For a large set of models, almost anything solved via value function iteration (Hennessy and Whited,

2007), heterogeneous agent models with intractable likelihoods (Kukackaa and Barunika, n.d.), and

most projection models, the likelihood is intractable forcing the use point estimate methods that

have weaknesses compared to Bayesian and MLE estimation.

In order to estimate non-perturbation models, one has to resort to simulation-based inference

approaches. As such, most of the time, these models are not estimated in a Bayesian or even full

information manner and practitioners resort to, for example, MSM.

As an illustration of problems faced by a perturbation approach, below is an example of a s-S

model policy function in Caballero and Engel (2007):

Figure I: s-S model

s-S models posits a �xed cost to changing a state variable which typically leads to kinks in the

6



policy function. Often times modeling inventory or capital requires this assumption. The above

example uses s-S costs with respect to menu prices assuming a linearly increasing money supply

(blue). This is a modi�cation of Caplin and Spulber (1987), which assumes there is a spectrum

of �rm prices from the s-S trigger point to zero. Caballero and Engel (2007) assume there is a

spectrum of �rms prices that only covers a portion of the range from the s-S trigger to zero. As the

money supply increases linearly, at some time periods there will be no �rms adjusting due to the

�xed costs and at some time periods an above average number of �rms will adjust to keep up with

the price level. This is shown by the behavior in the the green and red line. The kinks are where the

policy function is non-di�erentiable shows the transition where no �rm is adjusting to when some

�rms are adjusting prices or vice versa. Thus a perturbation approach, which estimates a Taylor

series approximation of the policy function, will not work as the policy function is non-analytic.

This implies that one must solve the model via something like value function iteration, which leads

to estimation problems mentioned above.

Papers which estimate s-S models include Arrow, Harris and Marschak (1951) and Caplin and

Spulber (1987). In particular, Khan and Thomas (2008) assumes an s-S model for heterogeneous

agent model for investment in capital. House and Leahy (2004) model the purchasing behavior

for used durable goods given a �xed cost in addition to the price of the good. Additionally, the

good is priced under adverse selection (Akerlof, 1978). Likewise in �nance there is a large literature

estimating structural models (He, Whited and Guo, 2021), (Taylor, 2013), (Terry, Whited and

Zakolyukina, 2022). Like the s-S models, this literature often includes �xed adjustment costs or

other approaches that yield kinks in the policy function.

II.C. Heterogeneous Agent Models

I will now discuss the literature around full information estimation of heterogeneous agent mod-

els. Much of the methodological interest in heterogeneous agent models is improving the speed of

solution methods (Auclert et al., 2021a), (Winberry, 2018), (Khan and Thomas, 2008). However

the computational bottleneck for estimation problems is not solution speed, but the intractability

of the Kalman �lter on large latent spaces. For this reason, while there is a large literature on
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heterogeneous agent model (Auclert et al., 2021b), (Ottonello and Winberry, 2020), (Caglio, Darst

and Kalemli- •Ozcan, 2021), most practitioners resort to calibration because of this and other bar-

riers to estimation. There have been approaches like Ahn et al. (2018), who propose a dimension

reduction technique to reduce latent state space size to be manageable for �ltering. However, this

approaches throws away information while still adding overhead compared to a pure simulation-

based approach. Liu and Plagborg-M�ller (2021) perform maximum likelihood estimation using

micro data along with macroeconomic aggregates. Parra-Alvarez, Posch and Wang (2020) estimate

an Aiyagari model (Aiyagari, 1994), (Huggett, 1993) and propose a diagnostic that �nds that a

sizable number of parameters are not well identi�ed and they suggest calibrating those parameters.

For my results, the choice to use uniform priors for all the estimation problems faces the same

documented identi�cation problem, however, uniform priors are still used for the sake of estimation

transparency.

While there is a large literature dealing with simulation-based algorithms, both macroeconomists

that work with heterogeneous agent and representative agent models have expressed a need to reduce

the barriers to MLE and Bayesian estimation. The SNPE and related algorithms can help mitigate

these barriers.

III. Background on Simulation Neural Posterior

Estimation (SNPE) and Metropolis-Hastings

This section will discuss the background of the SNPE estimator and MH-MCMC. First, I will

intuitively discuss the basics behind Bayesian estimation. Then I will move to a brief discussion

of normalizing 
ows, which is a density estimator used to estimate the posteriors from samples

drawn from the joint distribution. I will discuss the SNPE algorithm and �nally conclude with

some caveats and pathological examples.

When discussing the approach of simulation-based inference, it is useful to lay down a few def-

initions. The true data comes from the underlying data generating process. For macroeconomics,

it would be economic data like output, consumption, etc. The simulator is the model being esti-

8



mated, for this paper: a dynamic macro model. The only demand simulation-based inference puts

on simulators is to be able to simulate data that has a 1-1 correspondence to the covariates in the

true data.

III.A. Bayesian Basics

In this subsection, I will discuss the general paradigm of Bayesian estimation, then I will discuss

MH-MCMC.

Bayesian estimation attempts to �nd the posterior given the likelihood and prior of a model

using Bayes' rule:

P(� jx) =
P(xj� )P(� )

P(x)

Here P(� jx) is the posterior, P(xj� ) is the likelihood, and P(� ) is the prior. All approaches that

perform Bayesian inference, ranging from MH-MCMC, variational inference, to simulation-based

inference concern techniques for calculatingP(� jx) without calculating the partition function, P(x).

The predominant technique for performing Bayesian inference in economics is to perform MH-

MCMC (Herbst and Schorfheide, 2015), which I will describe next. In MH-MCMC, one concerns

oneself with likelihood ratios between parameter values. For example, if one knows both the prior

and the likelihood for any given point, one knows the relative likelihood of being in any point

versus any other. One point in parameter space may be twice as likely to be visited in the posterior

as another point, even if the actual probabilities are not known. Since one knows the relative

probabilities, one can design a random walk so that a walker visits probabilities equivalent to the

ratios of there probabilities. One way to do that is if a walker can choose to compare any point in

the posterior to the point the walker is currently at, the walker will move to the second point with

the likelihood according to the ratio of the unnormalized probabilities. If the second point is half

as likely to be in the posterior, the walker will move with probability one half and probability one

half stay in place. If the second point is more likely to be in the posterior, say twice as likely, the

walker will move to the second point for sure, with the understanding that if the walker randomly

selected to move back, the move back would be now with half the probability.
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In this way, the walker moves across the space of the posterior with relative frequency accord-

ing to P(xj� )P(� ) ratio between points, which ultimately means that one is sampling fromP(� jx)

without calculating the normalizing partition function. In practice, MCMC is a little more com-

plicated, as often the parameter space is unbounded, and one can't sample the entire space with

equal probability if the space is unbounded. Thus this involves the use of a proposal distribution

and the use of importance sampling (see Papamakarios and Murray (2016)).

Alternatives like variational inference have been proposed which speed up the inference at the

cost of some bias (Wainwright and Jordan, 2008), but it is beyond the scope of this paper. The

approach I propose, simulation-based inference, does not require knowing the likelihood,P(xj� ),

which often cannot be derived with commonly used solution methods, and scales computationally

much better than MH-MCMC for larger state-of-the-art HANK models. The backbone of the SNPE

approach I introduce to the economics literature samples points from the joint distribution P(x; � )

and shares similarities with the approach in Kristensen and Shin (2012). The next section will

discuss SNPE in depth

III.B. Sequential Neural Posterior Estimation

First, I will discuss the procedure underlying Kristensen and Shin (2012), which is the same

approach as the SNPE algorithm. Then I will extend the Kristensen and Shin (2012) approach

with multi-round inference as well as transition into a discussion of normalizing 
ows, which is the

density estimator that allows for most of the improvement over the Kristensen and Shin (2012)

result.

The SNPE algorithm �rst draws � from the prior. Then one simulates x, simulated data, from

the model likelihood, P(xj� ). Concatenating the two simulations together gives samples from the

joint distribution x; � � P(x; � ). With these samples one can use the normalizing 
ow density

estimator to estimate P(� jx). Setting the conditioning variable in the 
ow, x, to be the real data

X (note capitalized), allows one to have an estimate of the posterior.

One typically proceeds with SNPE in a multi-round fashion where a proposal distribution which

has more alignment with the posterior takes the place of the sampling from the prior. Since the true
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posterior and the true prior might have limited overlap, to reduce variance, it's often important to

estimate the posterior in multiple rounds. In the �rst round, one samples from the prior. In later

rounds, one samples from the current estimate of the posterior and performs importance sampling

to correct from the distribution shift. More mathematically, given a proposed prior of p0(� ), true

prior of p(� ), the posterior, when trained on this data, will have to be importance sample adjusted

by the factor of
p(� )
p0(� )

, to account for sampling from a distribution that isn't the prior. Greenberg,

Nonnenmacher and Macke (2019) perform the estimation in one step by recognizing the adjusted

distribution p0(� jx) = p(� jx)
p0(� )
p(� )

, where p0(� jx) is the posterior obtained by sampling from a

proposal distribution di�erent then the prior. Then if a normalizing 
ow f � (� jx) is estimated in

place ofp(� jx) in the above equation, a fully 
exible f � (� jx) will return a unbiased estimator of the

posterior.

Algorithm 1: SNPE Algorithm

Input: Simulator p(xj� ), prior p(� ), data x0, 
ow f � (xj� ), Rounds R, Samples S;

Initialize: Posterior p(0) = p(� ), data set D = fg ;

for i  1 to R do

Sample� (n ) � p( i � 1) for n = 1 :::S with Monte Carlo;

Simulate x (n ) � P(xj� (n ) ) for n = 1 :::S;

Concatenate dataD = D [ f x (n ) ; � (n ) gS
n =1 ;

while d� (x; � ) not convergeddo

Samplef x ( i ) ; � ( i ) gB
i � D from D;

Train f � (� jx)
p( i � 1)

p(� )
on f x ( i ) ; � ( i ) gB

i ;

end

Update posterior p( i ) / f � (� jx);

end

Other than multi-round inference, this approach is similar to (Kristensen and Shin, 2012). The

improvement that allows this approach to handle data with latent variables across time steps is the

use of the normalizing 
ow density estimator, which is the next section.
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III.C. Normalizing Flows

sectionNormalizing Flows In this section, I will discuss how a particular deep learning model,

the neural autoregressive 
ow (Huang et al., 2018), is structured. Then I will discuss how to use the

change of variables formula for a random variable to derive a likelihood of a sample under the 
ow.

I will also attempt to highlight advantages 
ows have over KDEs that make the SNPE algorithm

more powerful that the traditional Kristensen and Shin (2012) approach, including the ability to

do conditional density estimation, high dimensional density estimation, and the ability to sample

and maximum likelihood estimate without resort to rejection sampling.

A normalizing 
ow, which the neural autoregressive 
ow is a member, is a composition of indi-

vidual bijectors. Thus the �rst task is to de�ne these intermediate changes in measure,ya ; yb:::yz ,

so that they can be composed with each other to form a invertable function. For example the

output of f a becomes the input to f b giving the total composition much more 
exibility. This is

not trivial. For example take a polynomial regression. If one knows the input to this regression,

one can calculate the output. However if one knows the output, the roots of a polynomial are

not generally solvable and so polynomials aren't invertable transformations. However one set of

invertable transformations are a�ne operations. Given yi ; yj 2 RN and n going from 1...N indexing

each element in the vectoryi :

(1) 8n; y j
n = � 0

n + � 1
n � yi

n

This is trivially invertable as one can derive yi from yj by shifting the negative of � 0 and scaling

by the inverse of� 1. While one can still add nonlinearities like a logit link function between bijective

transformations, this still lacks expressivity. The standard way to extend this model is to allow for

the shifts and scales to be dependent on at least some of the inputs. For example, earlier elements

yi
a:l are only modi�ed in an directly invertable manner (ie yi

a:l = � 0 + � 1 � yj
a:l ), then condition the

12



shifts and scales for the rest of the elementsyi
l :N on inputs, yi

a:l , that weren't transformed:

(2) 8� 2 2 : N; y j
� = � 0

� (yi
a:� � 1) + � 1

� (yi
a:� � 1) � yi

�

� 0(:) and � 1(:) are typically di�erentiable and 
exible functions{typically feed-forward neural net-

works conditioned on earlier elements of the vector, that now output dynamic "psuedo" parameters

� 0, � 1 that depend on the conditioning variables, yi
a:� � 1.

Next I will illustrate how a neural autoregressive bijector is de�ned that I use in my paper. Make

the �rst element, yj
1 the identity or a�ne map, then the second element yj

2 an a�ne transformation

in yi
2 with psuedo-parameters� 0(yi

1) and � 1(yi
1) dependent only onyi

1. The third element, yj
3, has

psuedo-parameters then dependent only onyi
1:2 and yi

3 enters only in an a�ne manner.

yj
� = � (� 0

� (yi
a:� � 1) + � 1

� (yi
a:� � 1) � yi

� )

To make this model nonlinear, one typically adds a link function � which is usually a Leaky

ReLU (Xu et al., 2015). A Leaky ReLU is two lines of di�erent slope intersecting at zero. This kink

is often enough to make neural networks universal approximators of continuous functions (Cybenko,

1989).

Since� is invertable as well as the rest of the 
ow, one can recover the inputsyi knowing only

all elements in yj 2. This makes the bijector invertable in practice. This invertability is another

advantage normalizing 
ows have over KDE. One can sample from them and calculate the pdf of

any sample without the use of rejection sampling or other computationally heavy techniques. This

will be exploited in the SNPE algorithm as the 
ow will be used both as a density estimator and

as a proposal distribution for generating� samples.

Additionally since each a�ne transformation is a function of variables that have an index smaller

than the index in question, the Jacobian is lower triangular and the determinant is just the product

on the diagonal. This makes the change in variable formula scale linearly with the number of

2. The procedure to recover y i
2 from all the yj 's is to know y i

1 from the a�ne �rst equation. Then recover the
a�ne parameters for the y i

2 equation (which is only conditioned on y i
1 ). Then one can invert y j

2 to get y i
2 knowing

the a�ne parameters. Now that one knows y i
1:2 one can repeat the procedure to get y i

3 , etc.
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parameters.

Furthermore, if one stacks multiple bijections on top of one another, one can permute the order of

input elements (yi
1:N ) with a bijective operation so that di�erent bijectors have di�erent conditioning

relationships among variables allowing the 
ow to universally approximate any distribution. If the

functions for � 0(:) and � 1(:) are universal approximators (ie neural networks), one can show that

a stack of bijectors (along with permutations), is also a universal approximator and thus can

approximate any change of variable arbitrarily well. This will be discussed and proved in the

theoretical section in the appendix following Huang et al. (2018).

One can also condition� 0(:) and � 1(:) with additional arbitrary conditioning variables to form a


exible conditional density estimator. This ability to condition is one advantage it has over a KDE.

Since the problem is to estimate the density of� conditioned on x, � will take the role of f ya
1 ::ya

n g.

X will be the true data and analogue of simulated data which will be di�erentiated by a lower

casex. Conditioning variable x and real data X will enter as additional conditioning variables in

the 
ow. In particular they will be included as conditioning variables in the neural networks that

produces� 0(:) and � 1(:). Thus, for example beta1
5 will be conditioned on yi

1:::yi
4 as well asx/ X ,

the simulated/real data.

Since 
ows can model any conditional distribution (see appendix), and can calculate the like-

lihood of any sample point in the target space, one can �t this model on samples from arbitrary

continuous densities and have the guarantees that come with a well speci�ed maximum likelihood

problem. Thus, normalizing 
ows are density estimators that are robust to misspeci�cation and

asymptotically e�cient due to estimation with maximum likelihood.

Next I will discuss the change of variable formula for a 
ow. Given a density,p(ya) with random

vector realizationsya ; a normalizing 
ow is a function, f (ya) mapping ya to a target random variable

yz , which has density, q(yz ) such that the probability q(yz ) is related to the probability p(ya) via:

(3) q(yz ) = p(ya)jdet
df � 1

dya )j = p(yz )jdet
df (ya)

dya j � 1

This formula is simply the change of variable formula one learns in an introductory PhD econo-
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metrics class, with the �rst term p(ya) representing the measure in the base distribution, and the

Jacobian representing the change in measure due to the transformation to the target distribution

q(yz ). In the appendix, I show in more prove following Huang et al. (2018) how a neural autore-

gressive 
ow is both invertable and can approximate any continuous distribution. Assuming both

these things, one can use the change of variable formula to derive the likelihood that a sample point

yz was generated by the 
ow (Rezende and Mohamed, 2015). One uses the 
ow to transform theyz

to ya and then one can usep(ya) and the change of variable Jacobian to calculateq(yz ). One can

then perform maximum likelihood by modifying the parameters of the neural networks that govern

the psuedo-parameters (� 0
i (:) and � 1

i (:) in each layer to maximize q(yz ) for yz samples in the data.

III.D. Properties of SNPE

This section will brie
y relay the proof for why the SNPE algorithm converges to the Bayesian

posterior in the in�nite Monte Carlo sampling limit.

Proposition 1 from Papamakarios and Murray (2016) proves that if � is sampled from a pro-

posal distribution p0(� ) with the true prior p(� ) and the likelihood is sampled from p(xj� ) than a

normalizing 
ow f � (� jx) that maximizes the likelihood of the simulated data will be proportional

to
p0(� )
p(� )

p(� jx), ie:

f � (� jx) /
p0(� )
p(� )

p(� jx)(4)

provided that the true parameterization is contained in the set of parameters of the normalizing


ow. This restriction implies that the posterior is continuous and at least L 2 for instance because

the 
ow can only approximate continuous and L 2 distributions.

Next I will relay the intuition behind this proof. Given enough samples from x; � , maximum

likelihood of estimation will converge to the distribution that minimizes the KL divergence between

the distribution the sample comes from and the normalizing 
ow parameterization. Thus if the


ow has parameters that would set the KL-divergence to 0, this would be the actual distribution
p0(� )
p(� )

p(� jx) that is the data generating process. When �tting distributions, since (4) implies the
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distribution that f will converge too, if one estimatesf � (� jx)
p0(� jx)

p(� )
on the data, f will converge

to the posterior. The importance weights are inverted since this function is trained on data rather

than the data being reweighted by the weights. See the proof in (Papamakarios and Murray, 2016).

This proof goes hand in hand with the proof that a 
ow is a universal approximator (proof in

appendix), as given enough samples and a large enough 
ow, the true posterior will be arbitrarily

close in a KL divergence sense to the best parameterization of the 
ow.

III.E. Caveats and Pathological Examples Using SNPE

There are two caveats regarding the theoretical proprieties of SNPE: the lack of smoothness in

the posterior of kinked models and the issue of modeling stochastic singularities. Many, but not all,

s-S models and other models with kinks, may have discontinuities in the posterior distribution. In

particular the assumption that there is a normalizing 
ow parametrization that can generate the

posterior is violated. This problem is not unique to 
ows, MSM will also have similar problems, but

because it's not a full information technique ignoring this information will allow for convergence.

That being said, in practice, just like MSM, the 
ow will still converge. However, it will often

learn a continuous function that approximates the discontinuity in the posterior. In the maximum

likelihood case, a continuous function can approximate the discontinuity well, as dynamic models

often have discontinuities in only a handful of points if that. Thus, the estimation result will

generally be near the true likelihood, which is still an e�ciency improvement over the MSM. That

being said, if estimation with a kinked model is a problem, one can also add measurement error to

smooth the problem out.

Stochastic singularities are the second pathological example that the model will have di�culty

handling. This also leads to some estimation issues, not unique to 
ows, but also other MLE

approaches, like maximum likelihood after solving with perturbation. When this happens, the

dynamic model learns a sub-manifold on the entire space. Because a normalizing 
ow has to have

positive support on the entire space of of the target distribution, this also violates the assumption

that the normalizing 
ow parameterization can generate the posterior. Like in the previous case, the
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ow will just learn to put an asymptotically small probability on spaces not in the dynamic models

support. That being said, in the cases where there are stochastic singularities and one uses real

data that doesn't lie on the sub-manifold of the model, the model will fail to match the data. MSM

will typically still match the data, but this a weakness of the MSM. MSM will converge because

it cannot discern that the model has no support in those region of the data. One can add more

shocks, add measurement error, or a change in modeling like the generalized sS model (Caballero

and Engel, 2007) to avoid a stochastic singularity. If the true data is on the submanifold, SNPE

will generally work.

IV. Results

I relay the result of estimating six models using the SNPE algorithm. Each model illustrates

a di�erent aspect and capability of SNPE. The �rst model is the RBC model where I estimate on

simulated data and real data. The second model is toy corporate �nance model solved via value

function iteration and three di�erent simulation-based approaches are used to estimate this model.

The third model is the Lucas asset pricing model solved via projection. The forth model is the

Smets and Wouters (2007) model estimated via both MH-MCMC and SNPE. The �fth model is a

HANK model solved via Reiter's method and time iteration. Finally the sixth model is a model

of bequests which is solved via value function iteration. For more information on the details and

construction of the models, refer to the appendix.

I will now discuss proper posterior behavior and how to inspect the accuracy of the posterior.

While inspection is used for all of the models, for some that can be estimated reasonably, I will

compare posteriors with MH-MCMC. Through the Bernstein-von Mises theorem, the posterior

should converge to the true parameter given enough data samples. However, in �nite sample sizes

the correct posterior may not match the value of the true parameters. Nevertheless, it is a useful

check to make sure that the posterior mode generally matches in at least some of the parameters

and doesn't put vanishing posterior mass at the true values.
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IV.A. RBC Model

The �rst set of results deal with the RBC model. The RBC model has 4 parameters: � , � , � ,

and � as de�ned in the economic models section of the appendix. The CRRA elasticity,
 is set to

2. The model is simulated for 200 iterations and the �rst 100 iterations is dropped to get a steady

state behavior. The results of the posterior with the parameters displayed in the same order as

above is shown here:

Figure II: Simulated Data RBC

On the diagonal, the red bar indicates the true parameter values and the blue line indicates

the posterior of the model as estimated by the simulation-based inference approach. Each of the

density plots in the upper triangular portion of the graph indicates two way densities given by

the corresponding row and column, with color indicating the probability mass. Likewise in the o�
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diagonal charts, the red dot indicates the true value of the parameter with respect to the two axis.

In all models, uniform priors are used along the interval speci�ed for all parameters.

Next I show a chart that displays the an approximate ground truth by running MH-MCMC

for 2 million iterations. The fact that MH-MCMC concentrates around the true solution, indicates

that the posterior obtained with SNPE is likely the true posterior.

Figure III: Simulated Data RBC

As is clear, for MH-MCMC the simulation-based inference approach concentrates almost entirely

on the true parameter value. This extremely close relationship is not entirely replicated on the other

models, as the other models have 
atter likelihoods and more parameters. In many cases the true

posterior is not a delta function in the same way the simulated RBC model is.

The third chart is the same RBC model estimated on real data:

Here there is no available ground truth but the parameters derived are not realistic, which is
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Figure IV: Real Data RBC

20



not surprising for such a simple model. You can see that compared to the �rst chart, the method

is more uncertain of ground truth. You can also see the model doesn't estimate parameters close

to what theory would suggest. This is not surprising given that the RBC model is too simple to

work on real data and many of these parameters don't agree with theory even in more complex

models. Furthermore, to illustrate the accuracy of the model, all priors are uniform over the charted

interval. In the model, it predicts the Cobb-Douglas parameter, � should be very close to 1, which is

reasonable since labor is �xed in this model and capital is highly correlated with labor. Combining

the previous sentence with the fact that a Cobbs-Douglas function is homogeneous with degree 1,

implies that � should be close to 1. The discount rate,� , also doesn't agree with theory, which is

unsurprising as � is often calibrated because it's so di�cult to pin down. Likewise the parameter

on the productivity process, � , is another variable that is often estimated but is di�cult to pin

down in this model. � or the depreciation rate, is the only parameter where the model is relatively

reasonable.

IV.B. Cash Flow Model

The next set of results deal with a partial equilibrium model of �rm cash 
ow solved via value

function iteration. The parameters here are � , � , � , and � . � is the standard deviation of the

productivity law of motion. The interest rate is set at 5 percent and � is set as 1/(1+r). The cash


ow model was estimated with three di�erent methods, each of which obtaining nearly the same

posterior, giving con�dence the approach has converged to the right solution. The �rst chart will

show the posterior for a simulation-based inference approach that uses a normalizing 
ow and a

feed forward network as the embedding network (converting the high dimensionalx data into a

lower dimensional conditioning variable). The second chart will show the same model and data,

but using a RNN embedding network. The third chart will show a density estimator that is a GAN

instead of a normalizing 
ow. This is an alternative simulation-based estimator: Sequential Neural

Ratio Estimation which is discussed in the appendix.

Displaying the charts:
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Figure V: Value Function Iteration with a Dense Net Embedding
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Figure VI: Value Function Iteration with an RNN Embedding
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Figure VII: Value Function Iteration with a GAN Density Estimator

Despite using di�erent inference techniques, the posteriors look fairly equivalent by visual in-

spection, suggesting the same distribution has been learned. Furthermore it does seem like the

mode is fairly close to the actual parameterization. There some higher order considerations that

are getting in the way of the dynamics of the model, but the model seems to be able to accurately

recover the true parameters.

IV.C. Lucas Asset Pricing Projection Model

The following section shows the estimation procedure on a Lucas asset pricing model:
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Figure VIII: Ten Parameter HANK model

The model does seem to accurately �t reproduce the true values. the main error is on� d where

the posterior seems to be higher than the true value for the autoregressive parameters. All other

posteriors match very closely the actual data generating parameters. This model took under 10

hours to estimate on an 8 core Intel i7 machine. This also demonstrates that models solved via

projection can be estimated with my approach.

IV.D. Smets-Wouters 2007 Model

Next I will discuss the Smets-Wouters 2007 DSGE model. A description of the model can be

found at Smets and Wouters (2007) and more brie
y in the appendix. The model is a representative

agent New Keynesian model. The model has 8 shocks that interact with the rest of the model in

25



a autoregressive manner and 8 observed variables. The model estimates a model of potential GDP

with a 
exible price economy, along with the true economy with sticky Calvo prices. The model is

expressed in linearized form. For more information on the model see the paper and the appendix.

Since there are 36 parameters in this model, the data are separated into three di�erent charts of 12

parameters each. Roughly 500000 samples were generated to estimate the posterior. Because each

chart has 12 parameters each, I choose to only display the marginals as the two way density plot

would make the graphs look too busy.

Figure IX: Smets-Wouters Posterior with Parameters 1-12
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Figure X: Smets-Wouters Posterior with Parameters 12-24
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Figure XI: Smets-Wouters Posterior with Parameters 24-36

I will next discuss some of the parameters and the accuracy of the model. The model successfully

estimates capital share (calpha). The model seems to have a slightly more di�cult time with

adjustments costs (csadjcost) but the mode of the function is at the true value. Fixed costs (cfc)

seems to be estimated well, with the mode corresponding to the data generating parameter. The

wage stickiness posterior (cprobw) is generally in the right place but there is little probability mass

in the location of the true parameter. The wage indexation parameter (cindw) seems to be very

di�use putting almost uniform mass over the whole range. The Taylor rule parameters for output

(cry) and change in output (crdy) also agree with the ground truth, but the in
ation Taylor rule

parameter (crpi) is almost uniform. Some autoregressive parameters on shocks seem to be well
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estimated (crhob, crhoms, crhow), while others seem to be di�use or in areas of low probability

mass (crhoa, cmaw, crhoqs, cmap). Surprisingly, the model seems to do a poor job in identifying

the mean of the observed variables (ctrend, constepinf, constebeta), only iditi
ying constelab well.

However the model performs well in identifying the standard deviation of shock variables (ea, eb,

eg, eqs, em, epinf, ew).

Quite a few distributions are multi-modal. csadjcost, chabb, cmaw and cmap demonstrate

the ability for this method to identify multi-modal posteriors. With MH-MCMC, multi-modal

distributions are a well documented problem (Pompe, Holmes and  Latuszy�nski, 2020), (Herbst and

Schorfheide, 2015). However since this method uses a density estimator for posteriors, in theory

and demonstrated empirically here, multi-modal distributions aren't a problem.

I will now discuss the Smets-Wouters model estimated with MH-MCMC. In order to ensure the

MCMC approach was state of the art, Dynare (Adjemian et al., 2022) was used to draw samples

for this model. It took roughly 30 hours to draw 10 million samples. However as you can see, even

if 10 million samples were drawn after ten thousand sample burn in per chain, the posterior for

MCMC showed much less coverage of the true data generating process parameter.
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Figure XII: Smets-Wouters MH-MCMC Posterior with Parameters 1-12
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