
Simulation-Based Estimation of General Structural Network

Models

Cameron Fen∗

November 9, 2023

This paper addresses the issue of estimating structural models on data from a single graph/network. For
example, in macroeconomics, one could use the production network of the US, where nodes are firms
and edges are supplier/customer relationships, and one learns the value of the parameter that dictates
the probability of an edge forming. This is a longstanding problem in Economics and related fields. While
there exist methods for estimating structural models on many iid graphs/networks, there is limited research
on a general-purpose algorithm to fit structural models on a single network. This study proposes an
algorithm adapted from deep learning, dubbed Sequential Neural Posterior Estimation (SNPE), for network
analysis, which enables Bayesian and likelihood estimation of arbitrary structural models, given relatively
standard conditions. SNPE is a simulation-based estimator, which can produce likelihoods via samples
from a distribution. Networks sampled from a model are converted to numerical statistics via graph neural
networks and other methods. Then one derives the posterior by conditioning the distribution of parameters
on the statistics derived from the data-generating graph. Simulated tests demonstrate the effectiveness
and accuracy of this approach. To demonstrate the capability of this model, the algorithm is applied to
estimate a homophily citation model (Bramoullé et al., 2012) on empirical data, which was not attempted
by the original paper. This study presents a promising algorithm for fitting structural models on a single
network, opening avenues for future research in network estimation.
JEL Codes: C11, C68, C63, C45
Keywords: Neural Networks, Bayesian Inference, Network Estimation, Structural Models, Simulation-Based
Estimators

∗Cameron Fen is PhD student at the University of Michigan, Ann Arbor, MI, 48104 (E-mail: camfen@umich.edu.
Website: cameronfen.github.io.). The author thanks Florian Gunsilius for helpful feedback. All errors are my own.



I. Introduction

The estimation of structural models on networks/graphs is a less developed field compared to

the dynamic estimation of non-network structural models. Current methods are specialized and

cannot be applied to arbitrary structural models. The need for a general-purpose structural network

estimation procedure is necessary, as the Method of Simulated Moments (MSM) (McFadden, 1989)

did for macroeconomics and other fields. Estimating parameters of a structural model on a single

graph is difficult because the nodes are not iid and the graph does not typically produce a tractable

likelihood function. Despite these challenges, I use a machine learning technique, SNPE, which

allows for the estimation of structural models for data from a single (and potentially large) network,

overcoming these issues.

To make the problem concrete, I’m going to define a simple structural model based on Bramoullé

et al. (2012). Take a network of people as nodes and friendships as edges. Edges form in one of

two ways: Either you match with a probability ω with a random node/person, or you match

with a friend of a friend with probability ψ. The objective of the structural network estimation

problem is to figure out the values of ω and ψ given a real network. The challenges of this problem

are 1) it is intractable to calculate the likelihood that the model generated the real graph so one

cannot use likelihood function methods, and 2) nodes are not iid as nodes with more edges will

get relatively richer, and so method of moment methods will not work. However, SNPE neither

requires a likelihood function nor iid nodes and can resolve this issue. Of course, this model is not

the only model this approach can solve. As long as one can simulate graphs from the structural

graph model and the structural model puts support on the true data, there is a good chance SNPE

will be able to estimate.

SNPE is a simulation-based Bayesian or MLE method. SNPE works by first sampling from the

prior and then sampling from the model. In this case, the model produces a network, Y , condi-

tional on the first stage prior samples: ω and ψ. Now one would like to estimate the conditional

density P (ω, ψ|Y ), as conditioning Y on the real graph Y ′ would give the posterior. The meth-

ods section below as well as the SNPE section in Fen (2022) describe how to do this. The one

1



problem compared to SNPE structural estimation is the conditional density estimator requires the

conditioning variable, Y , to be a numerical vector. In order to convert the graph into a set of

(hopefully sufficient) statistics, I use either a graph convolutional neural network or some sort of

algorithmic network embedding. I define the conversion of Y to a set of statistics by the following

equation: X = G(Y ). Now I have X,ω, ψ joint samples where X is a numerical vector and can now

fit a conditional estimator, P (ω, ψ|X). Ultimately, one can derive the posterior by conditioning

X on G(Y ′), where Y ′ is the ground truth graph. The ultimate posterior is P (θ, ω|X = G(Y ′)).

This derives the posterior in the network estimation problem. If one wants to perform maximum

likelihood, one can use flat priors and take the mode of the posterior.

There are many papers that have implemented structural models, but due to lack of estimation

tools, do not perform full estimation on real data (Calvo-Armengol and Jackson, 2004), (Carvalho

and Voigtländer, 2014), (Calvó-Armengol and Jackson, 2007). Because conventional estimation

techniques are generally ad-hoc or only work for data with multiple networks, many papers choose

not to estimate their models on data and only report theoretical properties of their models (Jackson

and Wolinsky, 1996), (Gilles, Johnson et al., 2000), (Furusawa and Konishi, 2007). As far as I know,

there are no good alternatives for estimating general structural models. If one wants to structure

the structural model that generates networks in particular ways, one can evaluate the likelihood.

One such example is the Exponential Random Graph Model (Robins et al., 2007). The problem

with this type of model is the likelihood is defined in an ad-hoc manner, so it’s both difficult to

simulate from and give a structural interpretation to the parameters. This is unlike, for example,

the Bramoullé et al. (2012) model, which has a clear interpretation of parameters and is easy to

simulate but is difficult to estimate. My approach resolves this issue allowing structural models in

the vein of Bramoullé et al. (2012) to be estimated.

The next section, Section II., discusses the SNPE simulation-based likelihood method. It also

discusses network embedding methods, where the model converts a graph into statistics so that a

density estimator can be conditioned on a statistic representing the graph. The Results Section,

Section III., applies the estimation routine on three different networks, demonstrating the ability of

the algorithm to recover the calibrated parameters of these models. The Empirical Section, Section

2



IV., applies the algorithm to the Bramoullé et al. (2012) structural model, which was not estimated

in the original paper.

II. Methods

In this section, I will present an overview of a simulation-based estimation approach, Sequential

Neural Posterior Estimation (SNPE). The SNPE algorithm is a Bayesian inference technique that

uses a machine learning conditional density estimator to learn the posterior distribution of the

parameters of interest. In addition to the SNPE algorithm, I will also discuss embedding networks.

Embedding networks are used to convert graph-structured data into a set of sufficient statistics as

the SNPE density estimators only work with numerical data. Two common types of embedding net-

works are graph convolutional neural networks (GCNN) (Kipf and Welling, 2016) and FEATHER

(Rozemberczki and Sarkar, 2020), which will both be discussed in Section II.B.. For more infor-

mation on normalizing flow models and the SNPE algorithm, the reader is referred to the section

”Background on SNPE and MCMC” in Fen (2022).

II.A. Background on Simulation Neural Posterior Estimation (SNPE)

The application of SNPE for simulation-based Bayesian inference has gained increasing attention

in the sciences (Cranmer, Brehmer and Louppe, 2020). The SNPE algorithm has been described in

detail in Fen (2022), which provides a comprehensive account of the method. This paper will only

provide a brief overview of the algorithm but will provide a more detailed discussion of the novel

aspects of the paper, discussing graph neural networks and other embedding methods that are used

to convert graph data into numerical values.

SNPE is a simulation-based algorithm that can recover the posterior distribution of the param-

eters by sampling from the parameters space, P (θ), and the model, P (Y |θ), and estimating the

density P (θ|Y ). Here θ is a catchall parameter that, for example, in the Bramoullé et al. (2012)

example, encompasses ω and ψ. The estimation of the density is done by fitting a density estima-

tor of the conditional posterior on the joint samples (Y, θ). The density estimators will be briefly

3



discussed below in this section but more comprehensively in Fen (2022). The resulting posterior

estimate is conditioned on the real data, Y ′, and can be used to make predictions or inferences

about the parameters of the model. The SNPE algorithm shares similarities with the approach to

simulation-based MLE proposed by Kristensen and Shin (2012). Notably, because the algorithm

is simulation-based, it does not require a likelihood function which is almost always intractable for

structural network models. Additionally, it doesn’t require nodes to be iid, which is essential for

current methods of structural network estimation.

To apply SNPE in the case of graph data, it is necessary to use a GCNN or a fixed embedding

algorithm to convert the network data into a set of numerical values. This is because in this

case, Y and Y ′ are model-simulated network data and true data, respectively, and are in graph

form. However, the conditional inputs in the machine learning conditional density estimator require

numerical inputs. Thus, the approach needs a graph neural network to convert the network data

into numerical values, X and X ′ respectively, for the machine learning conditional density estimator

to train on. An alternative approach, the FEATHER algorithm (Rozemberczki and Sarkar, 2020)

uses the characteristic function of a random walk to create numerical values. I will discuss both

these graph embedding techniques and how they work in Section II.B.. Below under the label

Algorithm II.A. is the SNPE algorithm, using a graph embedding technique G(.), either a GCNN

or fixed embedding:

4



Algorithm 1: SNPE Algorithm

Input: Simulator P (Y |θ), prior P (θ), data Y ′, graph statistics X, Graph embedding

method, G(.), flow fϕ(θ|G(Y )), Rounds R, Samples S;

Initialize: Posterior P (0) = P (θ), data set D = {};

for i← 1 to R do

Sample θ(n) ∼ P (i−1) for n = 1...S with Monte Carlo;

Simulate Y (n) ∼ P (Y |θ(n)) for n = 1...S;

Concatenate data D = D ∪ {Y (n), θ(n)}Sn=1;

while fϕ(θ|X = G(Y ′)) not converged do

Sample {Y (i), θ(i)}Bi ∼ D from D;

Train fϕ(θ|X = G(Y ))
p(i−1)

p(θ)
on {Y (i), θ(i)}Bi ;

end

Update posterior p(i) = fϕ(θ|X = G(Y ′));

end

The methodology employed in this study builds on previous research that utilized the kernel

density estimator (KDE) for simulation-based inference (Kristensen and Shin, 2012). While the

KDE has been shown to be a flexible and versatile method, it is not without significant limitations.

In particular, the KDE struggles with conditional estimation and the ability to jointly optimize a

graph neural network whose job is to convert graphs to sufficient statistics, with its own density

estimation.

To address these limitations, this study utilizes advanced machine-learning techniques to es-

timate conditional densities in a gradient-based manner allowing us to evaluate the graph neural

network in an end-to-end manner. The methods discussed in Fen (2022) offer several promising al-

ternatives to the traditional KDE approach. One such method is the normalizing flow, which is able

to handle high-dimensional data and estimate conditional densities. Another approach discussed in

the paper is the use of a Generative Adversarial Network (Goodfellow et al., 2014) (GAN), which

can estimate the likelihood function, but requires either rejection sampling or variational inference

5



projection onto a flow for sampling. A third approach involves using a Conditional Mixture of

Gaussians (CMoG), which is more straightforward but cannot handle higher dimensional problems.

Since CMoG is the easiest approach to follow and typical structural models on graphs have fewer

parameters, I will discuss this approach. The other density estimators are discussed in Fen (2022),

Section III.C, and sections following it.

The CMoG approach is a powerful tool for density estimation in high-dimensional spaces, and

in the context of simulation-based Bayesian inference, can enable the estimation of conditional

posteriors. As outlined in Bishop (1994), a Mixture of Gaussians is a linear combination of N

Gaussian distributions, each with its own mean µi, covariance Σi, and weight pii. The probability

density function (pdf) of a point under this mixture can be calculated using the equation:

P (θ) =

N∑
i

πi ∗N(θ;µi,Σi)

Here N(θ;µi,Σi) indicates the probability of theta under the ith multivariate normal with mean

µi, and covariance Σi. Here is an image illustrating the structure of an unconditional mixture of

Guassians:

Figure I: Mixture of Gaussians

To obtain the conditional density estimator, a neural network is used to model the conditional

relationship between the parameters θ and the data X. The neural network takes X as input

and returns the parameters for the CMoG, including the weights, means, and covariances for each

Gaussian component. These parameters can then be used to estimate the conditional posterior

density P (θ|X) using the equation provided in the previous paragraph:

6



P (θ|X) =

N∑
i

πi(X) ∗Qi(θ;µi(X),Σi(X))

The use of a neural network to estimate conditional density also provides flexibility and adapt-

ability to the density estimator. Changes in the input data X can result in changes to the CMoG,

allowing for the model to adapt to changes in the data. Additionally, the parameters of the neural

network can be optimized via MLE to improve the accuracy of the density estimator. This approach

allows for the estimation of accurate conditional posteriors, even in relatively high-dimensional

spaces, and can be a useful tool for simulation-based inference.

One can also optimize the likelihood of the CMoG, P (θ|X), in conjunction with a GCNN. In

this case πi(.), µi(.), and Σi(.), would all be graph neural networks and they convert graphs Y , into

parameters πi, µi, and Σi:

P (θ|Y ) =

N∑
i

πi(Y ) ∗Qi(θ;µi(Y ),Σi(Y ))

While I’ve discussed how SNPE works from a high level, I’ve abstracted from how to build a

machine-learning model that can convert graphs into statistics. Discussing GCNNs and fixed graph

embeddings will be discussed in the next session.

II.B. Graph Convolution Neural Networks

In order to use graphs as inputs for density estimation, they must first be converted into numer-

ical values which hopefully are sufficient statistics. This is typically achieved using graph neural

networks or fixed graph embeddings. One type of neural network is the Feed-Forward neural net-

work, which is composed of multiple layers of interconnected nodes. Each layer takes the output of

the previous layer and maps it to a new set of outputs. The basic unit of a Feed-Forward Neural

Network is the layer, which is defined by the equation:

(1) xj = σ(Aixi +Bi)

7



Here, xi and xj represent the input and output of the layer, both of which are vectors, re-

spectively. The matrix Ai maps the input, xi, to the output, xj , and Bi is an intercept term.

The function σ is a nonlinearity that adds flexibility to the network, allowing it to learn complex

relationships between inputs and outputs. A popular choice of nonlinearity is the Rectified Linear

Unit (ReLU), shown in Figure II and has been shown to work well in many applications (Agarap,

2018).

Figure II: ReLU Activation Function

The idea behind a Feed-Forward Neural Network is to compose many copies of equation (1),

one on top of another. Thus given an input xi, the first equation produces xj , then xj is an input

to the next layer which is also a vectored-valued equation: xk = σ(Ajxj + Bj), with different

parameter values for A and B. One can continue composing these functions one on top of another.

Additionally, one can increase the dimensionality of the intermediate vector xj , as its elements

aren’t constrained by the dimension of the input or output. Both methods increase the parameter

count and allow the neural network to be more flexible.

While a Feed-Forward Neural Network can be used to process a variety of inputs, including

graphs, it does not take into account the inherent structure of the input. Graphs have a natural

structure that can be exploited to improve the accuracy and information conveyed from a statistic

generated from a function that takes in a graph and outputs a numerical set of statistics corre-

sponding to the graph. This is where Graph/network Convolutional Neural Networks (GCNNs)

8



come in. GCNNs are a type of neural network designed specifically to work with graph-structured

data. They use a form of a convolution operation, similar to that used in image processing, to

extract features from the graph. This allows the network to take into account the topology of the

graph, as well as the features of individual nodes and edges when making predictions (Wu et al.,

2020).

GCNNs (Kipf and Welling, 2016) have shown great potential in working with graph data, and

their architecture is specifically designed for this purpose. Typically, GCNNs define an adjacency

matrix, denoted by A, which characterizes the edges between nodes in a graph. This matrix is usu-

ally normalized by dividing by the degree matrix, and the resulting normalized matrix is denoted by

A∗. In GCNNs, the input of a given layer, Xi, which can contain a network of node characteristics,

is fed into a Graph/network Convolutional Layer. This layer is defined as Xj = σ(WiXiA
∗ + Bi),

where Wi and Bi are learnable parameter matrices (vectors), and σ is a nonlinearity. Here Xj is

the output node characteristics, which results from applying the GCNN layer to Xi. By using the

adjacency matrix, GCNNs extend the feed-forward neural network architecture to enable the char-

acteristics of nearby nodes to affect each other more strongly than those of far away nodes. This

inductive bias allows the model to efficiently handle data that is defined on networks. For instance,

a randomly initialized graph neural network can nearly learn how to cluster network data properly,

as demonstrated in the Karate Club dataset, which is classified by color using a modularity-based

algorithm (Brandes et al., 2007). These colors represent clusters of nodes that share a community

together, due to sharing an abnormally high number of edges within the cluster. Figure III shows

the Karate Club data set with nodes colored according to their cluster:

Figure III: Karate Club Network Picture

9



The randomly initialized GCNN then produces a 2D embedding and without training, nodes

belonging to the same cluster are given embedding values close to one another. Below, Figure IV

shows the same cluster colors produced by a randomly initialized graph neural network:

Figure IV: The Karate Club Nodes in Embedding Space

With training, one can learn even more effective embeddings that can take a graph and produce

numerical values for the simulation-based inference approach. Given a Conditonal Mixture of

Gaussians trained to estimate P (θ|X) and a graph Y , the GCNN,, G(), takes Y and returns a

numerical embedding X that can be fed into the density estimator to properly condition on the

graph. The GCNN is trained end-to-end with the density estimator and so should be able to find

the best possible statistics that maximize the fit of the density estimator.

II.C. FEATHER Network Embedding

An alternative is to use an out-of-the-box graph embedding technique without learning param-

eters. In this paper, I use the FEATHER algorithm (Rozemberczki and Sarkar, 2020) as the graph

embedding technique. FEATHER learns node embeddings from the characteristic function of the

probability density function (pdf) implied by a random walk from a node, and then averages the

node embeddings to obtain the graph embedding. This is achieved by learning the function that

maps the node-level features – which in our case are the default features of eccentricity, transitiv-

ity, and degree – to the complex plane. The algorithm then evaluates the probability associated

with each node of the random walk on the network for a certain number of iterations and then

converts the probabilities to their characteristic function. The network-level embedding is obtained

10



by averaging the node embeddings.

For each node, the FEATHER algorithm attempts to learn the characteristic function for the

probability distribution of a random walk starting from the source node. Given a network Y with

nodes and edges V and E, the FEATHER algorithm learns the function:

E[eiθx|Y, u] =
∑
w∈V

P (w|u)(cos(Θxw) + i sin(Θxw))

Here P (w|u) is the probability that node w is reached from node u after r random walk steps. xw are

the node-level features. As my graphs have no node features, the features are the default features of

eccentricity, transitivity, and degree. One can evaluate the random walk on a graph for r iterations

from 1 to n steps from the original node. Then one can also evaluate the characteristic function at

designated points of Θ. In order to get a graph-level embedding from these node embeddings, the

algorithm averages across node embeddings.

While FEATHER is the embedding technique used in this paper, there are many other ap-

proaches that can be used. Other graph embedding techniques include graph2vec (Narayanan

et al., 2017), wavelets-based embeddings (Wang et al., 2021), and many others from libraries such

as the Karate Club (Rozemberczki, Kiss and Sarkar, 2020). The reason for using a fixed embedding

is that, unless one is dealing with sparse graphs, the amount of memory required to store a graph is

quadratic in the number of nodes. As our method, Sequential Neural Posterior Estimation (SNPE),

often requires a large number of graphs for estimation, memory constraints can quickly become an

issue. However, with an embedding method that does not require any modifiable weights, one can

derive the embedding and then throw away the graph, saving only the embedding for future itera-

tions. This allows one to work with much larger graphs without running into memory constraints.

II.D. Limitations of Network-based Embedding Methods

This section discusses the main weakness of GCNNs, and related techniques like graph trans-

formers, and graph embedding methods. One main result discussed in Fen (2022) concerns universal

approximator properties of Normalizing Flows and Mixture of Gaussians. The graph SNPE algo-

11



rithm does not have this quality. Likewise, large social networks are also beyond the computational

capacity without a large amount of memory, although with fixed embeddings, work on them is more

possible.

The results in Fen (2022) and borrowed from Huang et al. (2018), Goodfellow et al. (2014), and

Bishop (1994) demonstrate that the normalizing flow, GAN, and a Mixture of Gaussians in the

SNPE algorithm are universal approximator of probability distributions and that any large enough

density estimator of these forms can model any continuous probability distribution. However, this

result no longer holds with graph data. The reason is that GCNNs, their cousins graph attention

transformers (Veličković et al., 2017), and related embedding methods, can not distinguish between

certain graphs that are non-isomorphic (Xu et al., 2018). Thus they are not universal approximators.

Although the result of universal approximation no longer holds, GCNNs are a powerful model

that has useful inductive biases for embedding graphs. While the results in Papamakarios and

Murray (2016) suggest that SNPE converges to the Bayesian posterior, the assumption that the

conditioning variable captures all variability in the data is not met when using most network-

based embedding models–be they GCNNs, or fixed embedding algorithms. These approaches are

specifically tailored toward graphs and give much better performance than other methods.

III. Results

This section presents empirical results that demonstrate the efficacy of the proposed algorithm

in recovering the parameters of a structural model from the graph generated by those parameters.

To this end, I begin by discussing the Newman-Watts-Strogatz graph (Newman and Watts, 1999),

a widely-used network model. The algorithm is then tested on other network models, namely

the Power-Law Cluster (Holme and Kim, 2002) and Relaxed Caveman graphs (Fortunato, 2010).

Finally, I perform an empirical exercise estimating the Bramoullé et al. (2012) structural model on

the Karate Club network.

To evaluate the algorithm’s performance, a simulated network is drawn from the structural

model using a specific set of parameters, and the structural model parameters are then estimated

12



based on the given network.

The results demonstrate the algorithm’s effectiveness in recovering the structural model param-

eters from the generated graph for all three types of network models considered. The posterior

estimates closely match the true parameter values, as indicated by the convergence of the blue lines

to the red lines in the charts. The heat maps further confirm the accuracy of the parameter estima-

tion, with high probability density concentrated around the true parameter values. These findings

provide evidence that the proposed algorithm can be applied to a wide range of network models

and can effectively recover the underlying structural parameters, which is crucial for accurately

characterizing and understanding real-world networks.

III.A. Newman-Watts-Strogatz Small World Graph

The focus of this section is to discuss the results obtained for the small-world graph, as proposed

by Newman and Watts (1999). This model has two parameters, namely, k and p. In this model,

the number of nodes is arranged in a ring, and each node is connected to the k nearest neighbors in

the ring. For each edge, there is a probability, p, that the terminating node, u, of that edge, u, v,

will form a new edge with a random node, w. To embed the generated graph, a graph convolutional

neural network is employed.

The results are presented in the charts below, where the blue line corresponds to the posterior

of the estimation routine, and the red line represents the true calibrated parameter value. The

off-diagonal charts show a heat map of the two-way distribution implied by the parameter that

defines the row and the column that intersects on a given chart. In cases where the parameters are

integer-valued, a continuous uniform distribution was still used for sampling, but the floor function

was applied to generate an integer. As the number of nodes is known in the dataset, the model

generates a network with the same number of nodes as the dataset.

In my analysis, the value of k is fixed at 12, and p is set to 0.33. The results indicate that

the proposed algorithm successfully recovers a posterior distribution whose mode is quite close

to the true parameter values of k and p, demonstrating the algorithm’s efficacy in recovering the

underlying structural parameters for this specific type of graph.

13



Figure V: SNPE Results of Estimating the Newman-Watts-Strogatz Small World
Network

III.B. Power-Law Cluster Graph

In this section, I will focus on the estimation of the Power-Law cluster graph on simulated data,

as proposed by Holme and Kim (2002). The model has two parameters: the number of random

edges to add to each node where edges are added preferentially to vertices with higher degrees.

The second parameter is the probability of closing a triangle with a randomly chosen neighbor after

an edge is added. The random edge parameter must be an integer; therefore, uniform random

variables are generated and then rounded to the nearest integer. For our analysis, the random edge

parameter is set to 3, and the triangle probability is set to 0.35. These parameter values result

in fewer triangles being created, as the parameter values are on the low side. The results indicate

good identification of the edge parameter, but the triangle parameter is less well identified. This is

14



consistent with the literature on Exponential Random Graph Models (ERGM), where it is widely

known that triangles are difficult to identify (Handcock et al., 2020). To embed the generated

graph, a graph convolutional neural network is employed. Overall, the results suggest that the

proposed algorithm can successfully estimate the edge parameter in the power law cluster graph,

despite challenges in identifying the triangle parameter.

Figure VI: Power Law Cluster Graph

This chart shows the model accurately recovering the random edge probability of 3, However,

there is difficulty recovering the triangle probability as mentioned above.

III.C. Relaxed Caveman Graph

In this section, I turn my attention to the Relaxed Caveman Graph proposed by Fortunato

(2010), which is formed by randomly rewiring an edge formed by a clique in a caveman graph with

15



probability p. To generate the Relaxed Caveman graph, n cliques of size m are formed, and then

one edge in each complete graph clique is deleted to form another edge that connects all the cliques

in a cycle. For the analysis, I use 10 cliques of size 10 with a rewiring probability of 60 percent. The

high rewiring probability is intended to make the graph look less distinctive and resemble graphs

seen in nature more often. In contrast to the graph convolutional neural network used in previous

sections, I use the FEATHER graph embedding proposed by Rozemberczki and Sarkar (2020) to

embed the Relaxed Caveman graph.

Figure VII: Relaxed Caveman Graph

The posterior distribution for the Relaxed Caveman graph shows good convergence of the algo-

rithm, with the true parameters being very close to the mode of the posterior distribution. However,

there is a slight shift in the mode of the posterior distribution from the true value. This is a mistake

that can often be made using SNPE. Although Metropolis-Hastings Markov Chain Monte Carlo

(MCMC) often has poor mixing problems, SNPE algorithms rely on sampling and density esti-

16



mation and errors sometimes involve the entire distribution being shifted slightly from the correct

location. Overall, the results suggest that the proposed algorithm can successfully estimate the

parameters of the Relaxed Caveman graph, with some minor deviations in the estimated posterior

distribution.

IV. Empirical Application: Homophily Networks

This section outlines an empirical application of an algorithm to real data based on the citation

graph homophily paper by Bramoullé et al. (2012). The algorithm is used to extend the results of

the original paper by structurally estimating the model, which was not done in the original study.

The paper by Bramoullé et al. (2012) did not estimate their model on real data. Instead, they

use citations and citations of cited papers to come up with statistics that approximate what the

true underlying parameter value is. The paper assumes that n nodes are born one after another.

Each node that is born sends m > 1 connections to previously born nodes. A fraction of these

links, mr, are connections at random, and the remaining fraction of these links, ms = m−mr, are

search links – connections formed by citing a paper cited by a paper you cited.

However, this approach is less realistic for a graph of friends in the Karate Club data set since the

number of friends one has does not have a temporal dimension. Additionally, the original Bramoullé

et al. (2012) model, seems to assign almost no support to a wide variety of relatively reasonable

graphs – for example common friendship, supplier/customer, or citation graphs. Therefore, I modify

the Bramoullé et al. (2012) model to be more applicable to this scenario. In the modified model,

all nodes are initialized at the beginning and there is a probability that each node has a direct

connection with another node at the beginning of each round. Additionally, there is a separate

probability that a node is connected to the connection of a connection. Since temporal relationships

have been destroyed, this is an undirected network with the node representing a citation from the

earlier paper to the later paper. There are 15 rounds in total which is a reasonable amount for the

34-node Karate Club dataset.

The original Bramoullé et al. (2012) paper did not provide an estimation procedure for their

17



approach, so they used statistics from the network discussed above to approximate the random

connection and homophily connection rate. However, if the data was generated by this model, this

approach could overcount search citations, if there are some citations that are randomly created

even though there is an intermediary that is cited by the citing paper and cites the cited paper. On

the other hand, if the model is misspecified, it could also undercount search citations if someone

cites the paper knowing an intermediary paper but does not cite the intermediary paper.

IV.A. Karate Club Friendships Graph

This paper presents an analysis of a homophily model applied to the Karate Club dataset,

a dataset of friendship connections among Karate Club participants. The Bramoullé et al. (2012)

model assumes that individuals make direct friends and then make friends from their friends’ friends.

To test the validity of the model, I estimate it on the empirical data and then generate simulated

data using the model’s estimated parameters. I then estimate the model on the simulated data to

check for convergence to the true solution.

18



Figure VIII: SNPE Estimates Homophily Model on Karate Club data

I estimate the model on the Karate Club dataset and obtain the posterior distribution shown

in the above Figure VIII. This figure displays the homophily model estimated on the Karate Club

data. When estimated on real data, Figure VIII shows a posterior that concentrates around the true

parameter value for both parameters. The mode for the marginal of the first parameter, random

connection rate, is around .08. The mode for the marginal of the second parameter, homophily

connection rate, is around .23. I then estimate the model on the simulated data. To recover the

true parameters on the simulated data, I set the random connection rate to .08 and the homophily

search connection rate to .23, which were the approximate means of the empirical posterior. The

results of this estimation are shown in the figure below:

19



Figure IX: SNPE Estimates Homophily Model on simulated data

Testing the model on simulated data, it is evident from Figure VIII, that the model does a

good job of identifying the random connection parameters. However, the model performs poorly in

identifying the homophily search parameter. I attribute this to the fact that the simulated data,

in line with the Karate Club data, has only 34 nodes, and there will be some variance in the

simulated data, and a connection of a connection will be more difficult to extract from data than

direct connections. Nevertheless, the true parameter is still within the support of the posterior

for the homophily search parameter. These findings suggest that the homophily model provides a

reasonable explanation of the observed friendship connections in the Karate Club dataset, as well

as provides insights into the formation of social networks more generally.

20



V. Conclusion

In conclusion, this paper has introduced a novel method to estimate structural network models

on a single network. The approach is general-purpose and can estimate many models, regardless of

the structure, as long as one can simulate graphs from the structural model. Although this approach

is relatively unexplored, the results of this study demonstrate that it is a promising approach that

can lead to a better structural understanding of networks in the real world. However, this approach

is not without its limitations. One of the central issues is to clarify both theoretically and empirically

what sort of network models this approach can effectively estimate. Additionally, many structural

models have to be restructured so that the model puts positive support on the data used for

estimation. Nevertheless, there are many models that have not been estimated in the literature

that can be estimated in this way with some modifications to adjust for the support issue. In light

of these potential avenues for further research, this approach seems like a promising tool for future

analysis and has the potential to advance the study of network models.

References

Agarap, Abien Fred. 2018. “Deep learning using rectified linear units (relu).” arXiv preprint
arXiv:1803.08375.

Bishop, Christopher M. 1994. “Mixture density networks.”
Bramoullé, Yann, Sergio Currarini, Matthew O Jackson, Paolo Pin, and Brian W

Rogers. 2012. “Homophily and long-run integration in social networks.” Journal of Economic
Theory, 147(5): 1754–1786.

Brandes, Ulrik, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. 2007. “On modularity clustering.” IEEE transactions
on knowledge and data engineering, 20(2): 172–188.

Calvo-Armengol, Antoni, and Matthew O Jackson. 2004. “The effects of social networks
on employment and inequality.” American economic review, 94(3): 426–454.

Calvó-Armengol, Antoni, and Matthew O Jackson. 2007. “Networks in labor markets:
Wage and employment dynamics and inequality.” Journal of economic theory, 132(1): 27–46.

Carvalho, Vasco M, and Nico Voigtländer. 2014. “Input diffusion and the evolution of
production networks.” National Bureau of Economic Research.

Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. 2020. “The frontier of simulation-
based inference.” Proceedings of the National Academy of Sciences, 117(48): 30055–30062.

Fen, Cameron. 2022. “Fast Simulation-Based Bayesian Estimation of Dynamic Models using
Normalizing Flow Neural Networks.”

21



Fortunato, Santo. 2010. “Community detection in graphs.” Physics reports, 486(3-5): 75–174.
Furusawa, Taiji, and Hideo Konishi. 2007. “Free trade networks.” Journal of International

Economics, 72(2): 310–335.
Gilles, Robert P, Cathleen Johnson, et al. 2000. “original papers: Spatial social networks.”

Review of Economic Design, 5(3): 273–299.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. “Generative adversarial nets.”
Advances in neural information processing systems, 27.

Handcock, Mark S, David R Hunter, Carter T Butts, Steven M Goodreau, Pavel N
Krivitsky, and Martina Morris. 2020. “ergm: Fit, Simulate and Diagnose Exponential-
Family Models for Networks.”

Holme, Petter, and Beom Jun Kim. 2002. “Growing scale-free networks with tunable clus-
tering.” Physical review E, 65(2): 026107.

Huang, Chin-Wei, David Krueger, Alexandre Lacoste, and Aaron Courville. 2018.
“Neural autoregressive flows.” 2078–2087, PMLR.

Jackson, Matthew O, and Asher Wolinsky. 1996. “A strategic model of social and economic
networks.” Journal of economic theory, 71(1): 44–74.

Kipf, Thomas N, and Max Welling. 2016. “Semi-supervised classification with graph convo-
lutional networks.” arXiv preprint arXiv:1609.02907.

Kristensen, Dennis, and Yongseok Shin. 2012. “Estimation of dynamic models with non-
parametric simulated maximum likelihood.” Journal of Econometrics, 167(1): 76–94.

McFadden, Daniel. 1989. “A method of simulated moments for estimation of discrete response
models without numerical integration.” Econometrica: Journal of the Econometric Society,
995–1026.

Narayanan, Annamalai, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. “graph2vec: Learning distributed rep-
resentations of graphs.” arXiv preprint arXiv:1707.05005.

Newman, Mark EJ, and Duncan J Watts. 1999. “Renormalization group analysis of the
small-world network model.” Physics Letters A, 263(4-6): 341–346.

Papamakarios, George, and Iain Murray. 2016. “Fast ε-free inference of simulation mod-
els with bayesian conditional density estimation.” Advances in neural information processing
systems, 29.

Robins, Garry, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. “An introduction to
exponential random graph (p*) models for social networks.” Social networks, 29(2): 173–191.

Rozemberczki, Benedek, and Rik Sarkar. 2020. “Characteristic functions on graphs: Birds
of a feather, from statistical descriptors to parametric models.” 1325–1334.

Rozemberczki, Benedek, Oliver Kiss, and Rik Sarkar. 2020. “Karate Club: An API Ori-
ented Open-source Python Framework for Unsupervised Learning on Graphs.” 3125–3132,
ACM.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. 2017. “Graph attention networks.” arXiv preprint arXiv:1710.10903.

Wang, Lili, Chenghan Huang, Weicheng Ma, Xinyuan Cao, and Soroush Vosoughi.
2021. “Graph Embedding via Diffusion-Wavelets-Based Node Feature Distribution Character-
ization.” 3478–3482.

Wu, Z, S Pan, F Chen, G Long, C Zhang, and PS Yu. 2020. “A Comprehensive Survey on
Graph Neural Networks.” IEEE Transactions on Neural Networks and Learning Systems.

22



Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. “How powerful are
graph neural networks?” arXiv preprint arXiv:1810.00826.

Department of Economics, University of Michigan, Ann Arbor

23


	Introduction
	Methods
	Background on Simulation Neural Posterior Estimation (SNPE)
	Graph Convolution Neural Networks
	FEATHER Network Embedding
	Limitations of Network-based Embedding Methods

	Results
	Newman-Watts-Strogatz Small World Graph
	Power-Law Cluster Graph
	Relaxed Caveman Graph

	Empirical Application: Homophily Networks
	Karate Club Friendships Graph

	Conclusion

