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I. Introduction

A central problem in both reduced-form and Structural Macroeconomics is the dearth of un-

derlying data. For example, GDP is a quarterly dataset that only extends back to the late 1940s,

around 300 timesteps. Thus generalization and external validity of these models are a pertinent

problem. In forecasting, this approach is partially addressed by using simple linear models. In struc-

tural macroeconomics, the use of micro-founded parameters and Bayesian estimation attempts to

improve generalization to limited effect. More flexible and nonparametric models would likely pro-

duce more accurate forecasts, but with limited data, this avenue is not available. However, pooling

data across many different countries allows economists to forecast and even estimate larger struc-

tural models which have both better external validity and forecasting, without having to compromise

on internal validity or model design.

We show that the effectiveness of pooling US or other single-country data with other countries

in conjunction with large DSGE models and Machine Learning leads to improvements in external

validity and Economic forecasting. This pooling approach adds more data, rather than more co-

variates, and leads to consistent and significant improvements in external validity as measured by

timestep out-of-sample forecasts and other metrics. For example, our data goes from 211 timesteps

of US data for our AutoML model, to 2581 timesteps over all countries in our pooled data. This

not only leads to significant improvements in forecasting for standard models but also allows more

flexible models to be used without overfitting. Pooling a panel of countries also leads to parame-

ters that are a better fit to the underlying data-generating process – almost for free – without any

change to the underlying equations governing the models and only changing the interpretation from

a single country parameter to an average world parameter. Even in this case, we show that the

stability of parameters over space – across countries – may be better than the alternative – going

back further in time for more single-country data.

A central theme throughout this paper is that more flexible models benefit more from pooling.

We start with the linear models as a good baseline. Even in this case, pooling improves performance.

Estimating traditional reduced-form models – AR(2) (Walker, 1931), VAR(1), VAR(4) models
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(Sims, 1980) – we show that we can reduce RMSE by an average of 12% across horizons and models.

Outside of pure forecasting, analysis of our pooling procedure across models suggests improvements

in external validity in other ways – making models more policy/regime invariant. To show this,

we estimate both linear and nonlinear models on data from all countries except the target country

being forecasted. Thus, our test data is not only timestep out-of-sample, which we implement in all

our forecast evaluations but also country out-of-sample, which we add to illustrate generalizability.

Across most models and forecasting horizons, our out-of-sample forecasts outperform the typical

procedure of estimation models on only the data of the country of interest. This time and country

out-of-sample analysis leads to roughly 80% of the improvement gained from moving all the way to

forecasting with the full data set. We believe this provides evidence that this data augmentation

scheme can help make reduced-form as well as machine learning models more policy-invariant.

Moving to a more flexible model, we proceed to apply our panel data augmentation scheme

to the Smets-Wouters structural 36+ parameter DSGE models (Smets and Wouters, 2007). Our

augmentation statistically improves the generalization of this model by an average of 24% across

horizons. We again test our model in a country out-of-sample manner and show improvements while

estimating over a single country baseline. This suggests that even DSGE models are not immune

to the Lucas critique and the use of country panel data can improve policy/country invariance.

Given the consistent improvements across all horizons and reduced-form models, we are confident

this approach will generalize to the estimation of other structural models. We advocate apply-

ing this approach to calibration, generalized method of moments (Hansen and Singleton, 1982),

and Bayesian estimation (Fernández-Villaverde and Rubio-Ramı́rez, 2007), where the targets are

moments from a cross-section of countries instead of just one region, like the United States.

Recognizing that this augmentation increases the effective number of observations by a factor

of 10, we also demonstrate that pooling can overcome overfitting in flexible Machine Learning

models that can now outperform traditional forecasting models in this high data regime. This is

in line with the trend of larger models having a comparative advantage in terms of forecasting

improvement given more data. We use two different algorithms. The first, AutoML, runs a horse

race with hundreds of machine learning models to determine the best-performing model on the
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validation set, which is ultimately evaluated on the test set. We view AutoML as a proxy for great

Machine Learning performance, but also expect individual model tuning can improve performance

even further. As different models perform better under the low-data (US) regime and the high-

data (pooled) regime under AutoML, we also test an RNN to show the improvement of a single

model under both data regimes. The model improvement indicates that while these approaches

are competitive in the low data regime, machine learning methods consistently outperform baseline

Economic models – VAR(1), VAR(4), AR(2), Smets-Wouters, and Factor models – in the high data

regime. Furthermore, while some of the baseline models use a cross-section of country data, we only

use three covariates – GDP, consumption, and unemployment lags. In contrast, the DSGE model

uses 11 different covariates, the factor model uses 248, and the Survey of Professional Forecasters

(SPF) (None, 1968) uses just as many covariates along with real-time data, suggesting our Machine

Learning models still have room for improvement. Over most horizons, our model approaches SPF

median forecast performance, albeit evaluated on 2020 vintage data (see Appendix C), resulting in

outperformance over SPF benchmark at 5 quarters ahead. Moreover, the outperformance of our

model over the SPF benchmark is noteworthy as the SPF is an ensemble of both models and human

decision-makers.

The paper proceeds as follows: Section II. reviews the literature on forecasting and Recurrent

Neural Networks and describes how our paper merges these two fields; Section III. discusses Feed-

Forward Neural Networks, linear state-space models, and gated recurrent units (Cho et al., 2014);

Section V. describes the data; Section III.B. briefly mentions our model architecture; Section IV.

discusses the benchmark Economic models and the SPF that we compare our model to; Section VI.

and Appendix G.2 provide the main results and robustness checks; and Section VII. concludes the

paper.

II. Literature Review

This paper connects multiple strands of literature: Machine Learning, time-series econometrics,

and panel Macroeconomic analysis.
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As our pooling technique leads to larger datasets, this creates an opportunity to either increase

the parameter count in models or proceed to more powerful tools. In the area of Machine Learning,

when combined with additional data, even models with billions of parameters still exhibit continued

log-linear improvements in accuracy (Kaplan et al., 2020). This opens up an avenue to explore

whether the outperformance of linear models is due more to 1) the lack of data or 2) their attractive

properties in fitting the underlying data-generating process. The results of pooling across countries

suggest that the advantage of linear models is due to the former.

We applied a recent Machine Learning technique to our Economic data, AutoML, a technique in-

troduced and used to automate Machine Learning estimation as the individual tuning or parameters

and validation of algorithms became both more complicated and easier to automate computation-

ally (Thornton et al., 2013). Unlike the case with deep learning, many innovations came from the

software industry to automate estimation techniques. However, there is a vibrant academic liter-

ature that followed its introduction (F et al., 2014). The basic premise is to automate the model

training and discovery portion of Machine Learning. H2O (LeDell and Poirier, 2020), the AutoML

platform we use, takes data and automatically runs a horse race of Machine Learning models on the

validation set and then returns the best-performing model. Hence, we view the output model as a

proxy for a well-trained and effective predictive model by a data scientist, even if some additional

fine-tuning can improve performance. While there is room for human improvements over an auto-

mated Machine Learning process, removing the human from the process entirely in our AutoML

algorithm shields us from most p-hacking critiques.

The second machine learning procedure we used was the estimation of an RNN, which is a state-

space model much like the linear state-space models often used in Economics. Innovations in deep

learning have improved the predictive power of these models over what economists are used to for

their linear counterparts. RNNs have been around in many forms but were mainly popularized in

the 1980s (Rumelhart, Hinton and Williams, 1986). The popularity and performance of RNNs grew

with the introduction of long short-term memory (LSTM) networks by Hochreiter and Schmidhuber

(1997). The model uses gates to prevent unbounded or vanishing gradients, giving this model the

ability to have states that can “remember” many timesteps into the past. In addition to its pervasive
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use in language modeling, LSTMs are used in fields as disparate as robot control (Mayer et al., 2006),

protein homology detection (Hochreiter, Heusel and Obermayer, 2007), and rainfall detection (Shi

et al., 2015). We use a modification of long short-term memory networks called a Gated Recurrent

Unit (GRU) (Cho et al., 2014). RNNs and other deep learning architectures like convolutional

neural networks have been used to forecast unemployment (Smalter Hall and Cook, 2017). Within

Economics, GRUs have been applied in stock market prediction (Minh et al., 2018) and power grid

load forecasting (Li, Zhuang and Zhang, 2020).

Moving from machine learning models to Economics models, autoregressive models have been

the workhorse forecasting models since the late 1930s (Diebold, 1998), (Walker, 1931). Even the

Machine Learning models maintain an autoregressive structure in its inputs. Despite its simplicity

and age, the model is still used among practitioners and as a baseline in many papers (Watson,

2001). One advancement in forecasting stems from the greater adoption of structural or pseudo-

structural time series models like the Smets-Wouters DSGE models (Smets and Wouters, 2007).

While DSGE forecasting is widely used in the literature, it is competitive with, but often no better

than, a simple AR(2), with more bespoke DSGE models performing poorer (Edge, Kiley and Laforte,

2010). However, the use of DSGE models for counterfactual analysis is an important and unique

benefit of these models. The final economic baseline is the Factor Model (Stock and Watson, 2002a),

which attempts to use a large cross-section of data resulting in a more comprehensive picture of

the economy to perform forecasting.

Details on all these models and our implementation can be found in Appendix D. In addition,

our paper uses tools from forecast evaluation (West, 1996), (Pesaran and Timmermann, 1992),

and (Diebold and Mariano, 2002), as well as model averaging (Koop, Leon-Gonzalez and Strachan,

2012), (Timmermann, 2006), and (Wright, 2008).

Moving to structural Economics, there is scant but robust literature on panel data and dynamic

general equilibrium models (Breitung, 2015). Most of the literature focuses on the use of panel

data to better identify the effects of interest across countries. Much of it is theoretical and adopts

microeconometric panel techniques to macroeconomic data (Banerjee, Marcellino and Osbat, 2004).

This literature also studies the use of cross-sectional data to improve counterfactual analysis in
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general equilibrium models (Miyamoto, Nguyen and Sergeyev, 2018), (Crandall, Lehr and Litan,

2007) to have a more microeconomic forecasting focus (Baltagi, 2008). There is also literature

looking at specific panel models applied to Macroeconomics like dynamic panel models (Doran and

Schmidt, 2006), (Bai and Ng, 2010), and (Diebold, Rudebusch and Aruoba, 2006).

At the same time, the approach of pooling countries has faced some resistance for theoretical

reasons. Pesaran and Smith (1995) argue that structural parameters lose meaning as they turn into

a mean value across countries rather than an estimate for the true value in one country. However,

our results suggest that even if using a spatial dimension across countries, the econometrician still

needs a minimum amount of data for good parameter identification. If one pools across a large

spatial cross-section, one can use more recent data. As we show empirically, more recent data spread

across different countries has the same, if not more predictive power than data that is constrained

to a single country but extends further into the past. This finding suggests that even though it

might be neater to use single-country data extending further back in time, countries are somewhat

artificial boundaries. The stability and predictive power of parameters are at least as strong across

space as across time.

III. Machine Learning Models

III.A. Automated Machine Learning

AutoML software is designed to provide end-to-end solutions for Machine Learning problems

by efficiently training and evaluating a number of different models and ultimately returning the

best model. In order to provide a proxy for the performance of a good “nonparametric” Machine

Learning model, we tested the open-source Automated Machine Learning (AutoML) software H2O1.

We created a pipeline for each prediction horizon, trained the model using our international cross-

sectional data, evaluated on US validation data, and lastly, predicted using our US data test set.

In contrast with our own custom model, setting up H2O and training on our dataset was almost

entirely automated.

1. https://www.h2o.ai/
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The benefit of automation is that while humans can improve performance, there was little we

could do either via tinkering with architecture or devoting more computational resources to influence

the performance of the procedure analogous to either unintentional or intentional p-hacking. From

predicting one quarter ahead to five quarters ahead, the AutoML software picked a different model

for each horizon: XGBoost, gradient boosting machine, gradient boosting machine, distributed

random forest, and deep learning, for horizons 1 through 5 respectively. We noticed that the

software generally picked deep learning models for the quarters that were further away (four and

five quarters ahead) compared to predicting gradient-boosted techniques for closer quarters (one

and two quarters ahead). This is not surprising, as decision-tree-based techniques have relatively

few degrees of freedom and good inductive biases for many problems. On the other hand deep

learning techniques ultimately are more flexible and scale better on larger datasets because of

larger parameter counts. Ultimately, AutoML had very strong results and can be applied to other

prediction problems in Economics.

Additionally, because the AutoML selects a different model for a given horizon and data set

size, we also estimated an RNN on both the reduced USA dataset and the pooled world data set.

This allows us to show the effect of the increase in data size holding the model architecture fixed.

The RNN also has the advantage of not being a model considered by AutoML, which gives broader

coverage of the universe of Machine Learning models that are being considered in our paper.

III.B. Our Neural Network Model Architecture

An RNN model we use to supplement AutoML is the GRU model, described in Appendix E.4.

We add additional feedforward layers as well as other architecture choices as indicated in Figure I.

The model architecture involves preprocessing the data using two feed-forward dense layers with 64

and 128 hidden units, respectively, and rectified linear unit (Agarap, 2018) activation (see Appendix

E.5). Then it runs a GRU with sixteen states on this preprocessed data.2 Finally the output of the

2. While we use the word preprocessed, the approach is trained entirely end-to-end and is not a two-step process as
the word preprocess might imply. The neural network projects the input data – consumption growth, GDP growth,
and the unemployment rate – into a high dimensional state that the gated recurrent unit finds easier to work with
much like pre-processing would. The end-to-end procedure learns the pre-processing and the gated recurrent unit
analysis at the same time
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Figure I: Model Architecture
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GRU is concatenated with the original input (lagged GDP, consumption, and unemployment) and

fed into a linear layer which forecasts an output.

Our model contains parallel dense layers between each operation; the layers were originally skip

connections (He et al., 2015), but we modified them to allow for learning of linear parameters. The

final skip connection concatenates the input with the output of the network so that the neural

network would nest a VAR(1) model. These design choices all improved forecasting performance.

Between all of our non-skip connection layers, we also use batch normalization (Ioffe and Szegedy,

2015). More details on batch normalization can also be found in Appendix E.6. Ultimately, our

model comprises about 17,000 parameters which explains the comparative outperformance on a

data-rich regime.

IV. Economic Models

We tested the predictive power of a series of machine learning and traditional macroeconomic

models estimated on our panel of countries using our novel data pooling method. We found that the

more complex the model, the more our data augmentation helped. The machine learning models

tended to be more flexible, but even among economic models, the trend still held. Additionally, we

provided comparisons to the Survey of Professional Forecasters (None, 1968) median GDP forecast,

which is seen as a proxy for state-of-the-art performance. A discussion of the Survey of Professional

Forecasters and our attempt to evaluate their forecasts is contained in Appendix C. The baseline

economic models we used are the AR(2) autoregressive model, the Smets-Wouters 2007 DSGE

model (Smets and Wouters, 2007), and a Factor model (Stock and Watson, 2002a), (Stock and

Watson, 2002b) and a VAR(4)/VAR(1) (Sims, 1980). A more detailed explanation of these models

is contained in Appendix D For the linear models, getting cross-country data is straightforward.

Thus, we compare those models estimated only on US data as well as on our data set of 50 countries.

For the Smets-Wouters DSGE, we also assembled a panel of 27 rich and developing countries to

estimate the structural model on.

As is standard with Economic forecasting, the baseline models were trained in a pseudo-out-
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of-sample fashion where the training set/validation set expands as the forecast date becomes more

recent. However, with our neural network and AutoML, we keep the training set and validation

set fixed due to computational costs and programming constraints. We expect that our model will

improve if we use a pseudo-out-of-sample approach.

V. Data and Method

When initially training our complex neural network models, we found that US macroeconomic

data was not sufficient. So, in order to train the model, we use data from 49 other developed

and developing countries as listed in Appendix A. We source cross-country data from Trading

Economics via the Quandl platform API3 as well as GDP data from the World Bank.4 We used

GDP, consumption, and the unemployment rate as inputs to the model. GDP and consumption were

all expressed in growth rates. Unemployment was expressed as a rate as well. As mentioned earlier,

we also assembled 11 different covariates across 27 countries for a panel of data used to estimate

the Smets-Wouters DSGE. Data came from the Federal Reserve Economic Data (FRED), the

World Bank, Eurostat, the Organization for Economic Cooperation (OECD) and the International

Monetary Fund (IMF).

We split our data into training, validation, and test sets. We forecast GDP and evaluated it

with RMSE. The test set was from 2008-Q4 to 2020-Q1, either testing only US data or world data

depending on the particular problem. The validation consisted of data from 2003-Q4 to 2008-Q3,

which was only used for the RNN. This data was in the training set for all other models. AutoML,

which was not a sequential model, used k-fold cross-validation on the entire training set, comprised

of the remainder of data excluding test or validation sets. We chose these periods so that both the

test set and the validation set would have periods of both expansion and recession, based on the

US business cycle. Including the 2001 recession in the validation set would leave the model without

enough training data, so we split the data of the Great Recession over the test and validation set.

The quarter with the fall of Lehman Brothers and the largest dip in GDP was the first quarter in

3. https://www.quandl.com/tools/api
4. World Development Indicators, The World Bank

10



our test set, 2008-Q4. Two quarters with negative growth preceding this were in the validation set.

We estimated all models from a horizon of one quarter ahead to five quarters ahead. The metric of

choice for forecast evaluation was RMSE.

VI. Results

Our first set of results shows the benefit of pooled data on reduced-form models, VARs and ARs,

showing significantly improved GDP forecasting accuracy. Despite the relative parsimony (limited

parameters) of these models, adding pooled data improves RMSE performance almost uniformly

by an average of 12%. Our second set of results shows that the panel data augmentation improved

the chances of building externally, and potentially internally, valid structural models using Smets-

Wouters as the main benchmark. These models benefited more due to the pooled data as they

had a higher parameter count, improving RMSE by 24%. Our third set of results took all the

models and demonstrates the forecasting power of “nonparametric” Machine Learning models over

all the previously mentioned traditional Economic models in this relatively data-rich regime. As

these models were the largest and most data-hungry, the use of pooled data improved performance

from slightly above-average forecasters to providing state-of-the-art predictions across the board.

The RMSE of the RNN-based model improved by 23%, which was smaller than the structural

models. However, the RMSE starting point was much better than that of structural models, and

thus proportional performance was more difficult given the better original baseline. Ultimately,

we present an interesting finding in the improvement in performance as model capacity increased,

moving from the US data set to the pooled world data set. This suggests that more complex models

benefit from increasingly larger datasets and that pooling can address overfitting.

VI.A. Reduced-Form Models

Figure II shows the forecasting performance of either a VAR(1) or AR(2) model at a particular

forecast horizon: 1-quarter ahead (H1) to 5-quarters ahead (H5). The first bar in each pair repre-

sents the forecast RMSE on the test set (2008Q4-2020Q1) with the model estimated only on US
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Figure II: Evaluation of RMSE for Linear Models Using Both US Only Data and
Pooled World Panel Data for Five Time Horizons

data. The second bar in each pair represents forecasting performance using the model estimated

on the entire panel of countries. The stars next to the models’ name indicate the statistical signif-

icance of world data outperformance over the US data using a Diebold-Mariano test (Diebold and

Mariano, 2002) at the 1% (***), 5% (**) or 10% (*) level. This format will be followed for the rest

of the RMSE performance graphs unless otherwise noted.

Pooling improved the performance of the models in a statistically significant manner, especially

at longer horizons. Except for a slight underperformance at one quarter ahead for the AR(2),

all other horizon models show outperformance using the country panel data augmentation. The

outperformance of the pooled data averages roughly 12% of US RMSE over all horizon-model pairs.

We show a significant improvement with the pooled data, however, since the set has limited model

complexity, the improvement is not as large as that of more complex structural or Machine Learning

models.

Figure III shows similar data to Figure II, except the third bar for each horizon-model triplet

shows forecasting performance on the same US test data, but for a model that is both time step and

country out-of-sample. For example, since we forecasted the US GDP, we used every country but the

US to forecast the US GDP. This test enables us to show that using panel data can lead to models

that are policy/country invariant and can generalize even to country data that the model lacked
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Figure III: Reduced-Form Time Out-of-Sample as Well as Country Out-of-Sample
Forecasts

access to. In all cases, the RMSE of the out-of-sample forecasts were statistically indistinguishable

from the RMSE of the model estimated on the full panel of countries but significant over the US

baseline with stars indicating the significance of the out-of-sample forecast. Again, the models are

statistically significant mainly at longer horizons, but any significance is nevertheless impressive

since the outperforming model uses no US data to forecast US GDP. Excluding the H1 AR(2) pair

and using only the out-of-sample data led to capturing 79%, on average, of the outperformance of

the world panel over US-only data forecasts. Ultimately, there was an improvement in performance

due to the use of the pooled data over single-country training data.

We performed the same tests over our entire cross-section of countries, shown in Table I. For

example, for each local forecast, we used only French data to forecast French GDP. Likewise, for

world forecasts, we used the entire data set to estimate a single model, then for each country

we used the same model to jointly forecast the GDP of every country and average RMSE values

across countries. For out-of-sample data, a different model is trained to forecast each country, but

each model is estimated using every country but the country of forecasting interest. Aside from

providing an additional robustness test regarding the outperformance of world data and even out-

of-sample data, this table shows additional policy invariance both from the out-of-sample tests as

well as the world data tests, where the same model can jointly forecast all countries better than
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TABLE I: Average Forecasting Performance (RMSE) Evaluated over the World

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
AR(2)

Local Data 5.22 5.33 5.51 5.56 5.60
World Data 4.88 4.98 5.10 5.19 5.19
Out-of-Sample Data 5.07 5.13 5.36 5.36 5.38

VAR(1)
Local Data 5.10 5.17 5.19 5.29 5.26
World Data 4.80 4.94 5.04 5.11 5.12
Out-of-Sample Data 4.92 5.00 5.07 5.20 5.25

VAR(4)
Local Data 7.90 7.05 7.74 7.87 9.27
World Data 4.72 4.90 5.03 5.10 5.11
Out-of-Sample Data 4.70 4.87 5.02 5.17 5.26

custom-tailored models for each country. Additionally, this model seems to indicate a diminishing

return in terms of RMSE for linear models when using pooled data. Additionally, it seems like all

linear models converge to a similar RMSE. This suggests linear models cannot ultimately capture

the structure of the data-generating process and there will be improvement when moving to more

complex structural and machine learning models.

VI.B. Structural Models

Considering the success of data pooling for reduced-form models, we also tested the procedure

on structural models and achieved even greater success. Since the DSGE model requires 11 different

variables, we assembled our own data from the World Bank, OECD, Eurostat, and FRED. This

panel has only a 27-country cross-section which is smaller than the 50-country panel used in our

reduced-form models. The performance of our structural models demonstrates that this pooling of

data likely leads to performance gains across models, including DSGE models that should generalize

to out-of-sample data because of their resilience to the Lucas critique. Combined with the results

using machine learning models, our results make the case that model outperformance due to pooling

helps across many, if not most, types of models. The three results we show entail:

1) Comparing the forecasting performance of a DSGE model trained only on US data to
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a DSGE model estimated on the entire panel of countries in the same manner as Figure

II,

2) Comparing the performance of a model that is not only out-of-sample from a timestep

perspective as is usual in forecasting, but also does not contain the forecasting country

data in question when estimating, in the same manner as Figure III; and

3) Illustrating the empirical evidence testing parameter stability across time versus across

space and showing that parameters are likely as predictive – if not more predictive – when

working across space (countries) as across time. This suggests that pooling may not have

an interpretive disadvantage over estimating data much further back in time from only

one country.

The first result is illustrated in the graph below,

Figure IV: Evaluation of RMSE for DSGE Models Using Both US Only Data and
Cross-Country Panel Data

Unlike the reduced-form models, the most significant results for structural models, with p-values

less than 1%, were at shorter horizons – below three quarters ahead – although all horizons were

significant at the 10% level. The parameters that seemed to change the most – moving from US-

only data to world data – were the shocks and the moving averages of the shock variable, monetary

policy Taylor-rule variables, and variables governing wages and inflation. While the increasing

variance of the shocks did not affect expected forecasts due to certainty equivalence, the model is
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both less confident and closer to correct when using pooled world data. Perhaps it is unsurprising

that variables focusing on monetary policy and inflation are different when estimated on world

data. Inflation, especially among rich developing countries, along with the monetary response to

them, was a more pernicious problem outside the US than within (Azam and Khan, 2020). For

more information on the changes in structural variables when moving from US data to pooled world

data, see Appendix F.3.

Despite the increased uncertainty of the model as illustrated by the increase in the standard

deviation of the shocks, the parameters were more reliable when estimated with world data. The

improvement in RMSE averages over 25% over all horizons, which was more than double the

percentage improvement for reduced-form models. Part of the outperformance was due to the

weaker performance of the models estimated on US data. This suggests that the Smets-Wouters

model is no better at generalizing across policy regimes or countries than reduced-form models and

benefits more because of its higher parameter count.

Figure V: DSGE Time and Country Out-of-Sample Forecasts

In Figure V, we also provide a structural chart that parallels the out-of-sample chart in Figure

III in the reduced-form section. As a reminder, the out-of-sample DSGE model was estimated on

the panel of 26 countries (removing the US) so that the GDP forecast was country out-of-sample as

well as time step out-of-sample. The out-of-sample performance was 9% better, on average, than

the performance estimated on the entire world data. However, the Diebold-Mariano tests are less
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significant with only the first two horizons having p-values with less than 1% and no significance in

horizons four and five. This suggests that the out-of-sample outperformance may in part be due to

chance, and we studied this in further detail below. Since the United States was the only country

that has data that extends much before 2000 across all our needed variables, we hypothesized

that DSGE model parameters were more stable across countries than across time. Removing the

US made the data closer in time to the test set. This addresses an internal validity criticism of

our panel approach arguing that when pooled structural parameters have different values across

countries, estimating a single model on all countries strips the parameters of Economic meaning

(Pesaran and Smith, 1995). For example, the parameter no longer represents the depreciation rate

of the United States, but an average depreciation rate across 30 countries. This result provides a

suggestive counter-argument to that claim, by pointing out that, using data across a cross-section

of countries provides forecasts that are at least as good as using data that extends further back in

time.

Probing this hypothesis led to results that were somewhat mixed. We estimated a model trained

on the entire panel of countries with data from 1995-Q1 onward. This affected three countries –

the US, Japan, and New Zealand. This procedure isolates more sharply the effect of similarity

across space versus across time on model generalization, rather than just removing all US data.

The US lost about 140-190 data points (as the test set requires rolling forecasts), and New Zealand

and Japan both lost about 15-60 timesteps. Figure VI, illustrates this experiment to compare the

performance of models estimated on data since 1995 to models estimated with full country and

timesteps.

Figure VI shows GDP forecasts on the same test set: 2008Q4-2020Q1. The first bar in each

triplet is the DSGE model performance estimated using world data across all periods in time. The

second bar is the out-of-sample performance as shown in Figure V. The third bar is the performance

of a DSGE model estimated on all country data, but only since 1995 to make the data more relevant

across time to the test set. The 1995 onwards data performed worse than the out-of-sample test

which could suggest some of the outperformance of the out-of-sample DSGE model was due to

chance. However, it seems that the 1995 data performed at least as well as a model estimated on
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Figure VI: This Graph Compares Parameter Stability via Forecasts Going Back in
Time Versus Space

world data both pre and post-1995, despite our robust results suggesting that more data is generally

better. This makes sense when considering the advent of software, for example. The depreciation

rate in the US in 2020 plausibly shares more similarities with the depreciation rate in France in 2015

than the depreciation rate of the US in 1960. As one needs a set number of data points to identify

structural models anyway, our results provide suggestive evidence that getting cross-sectional data

results in parameters that are no less stable than parameters going back in time. The results seem

inconclusive but certainly don’t suggest any more parameter stability across time than space, in

contrast to Pesaran and Smith (1995) and generally accepted in the literature.

The DSGE models we estimated generally underperformed the parameters recovered in the

original Smets and Wouters (2007), because we focused on maximum likelihood estimation with-

out priors, optimized only with gradient descent. Despite the forecasting success of (Smets and

Wouters, 2007) and other Bayesian DSGE models (Herbst and Schorfheide, 2015), (Fernández-

Villaverde, Rubio-Ramı́rez and Schorfheide, 2016), we chose to use a maximum likelihood approach

to maintain comparability to the reduced-form and Machine Learning experiments as well as a large

portion of the applied literature that focuses on point estimate techniques ranging from calibration,

maximum likelihood, to generalized method of moments (Hansen and Singleton, 1982). However,

Figure V as well as Appendix G.1 shows the performance of a model estimated via maximum
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likelihood outperformed along some horizons the parameters of Smets and Wouters (2007). Given

the limitations of maximum likelihood and our differing focus, we see this outperformance as an

endorsement of the use of the pooling approach. We show that the use of pooled data results in

the Smets-Wouters DSGE model outperforming DSGE models estimated only on US data. Fur-

thermore, we provided suggestive evidence that is possible that models are more externally and

internally valid if one uses data across countries in addition to the statistically significant improve-

ment in generalization. Using our out-of-sample tests, we show that these models can improve

the out-of-sample generalization of the Smets-Wouters DSGE model even if they are theoretically

policy-invariant. The data shown in the charts are also be displayed in Appendix G.1. While it is

difficult to quantify the improved performance of calibration and generalized methods of moments,

based on the generalization improvements from estimation for both reduced-form and structural

models, we imagine these results should generalize and Macroeconomists would benefit from esti-

mating to moments derived by a large cross-section of countries.

VI.C. Nonparametric Machine Learning Models

Given the improvement in forecasting performance for both the reduced-form and structural

models and the improving relative performance of complex models, we decided to test the per-

formance of nonparametric models that are even more flexible than the DSGEs and some of the

larger VARs. We tested both an RNN, as well as an AutoML algorithm. While the improvement in

performance was less than the DSGE improvement from pooled data, it still seems more impressive

given that the flexible models had much better baseline performance even on US data. This again

illustrates the trend that increased parameter count leads to a gain in performance that comes from

pooling.

The two charts below illustrate the performance of the RNN and AutoML models on both US

and pooled world data.

We compared estimation on US data as well as pooled world data, for both models. For the

RNN, Figure VII shows the improvement in RMSE from estimating a RNN using only US data

to using the entire cross-section of 50 countries. The improvement was statistically significant
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Figure VII: Evaluation of RNN Models Using Both US-Only Data and
Cross-Country Panel Data

for all horizons except five quarters ahead. The average improvement was around 23% over all

horizons, which was similar to the improvement for the Smets-Wouters model and almost double

the improvement of linear models. This is a reassuring confirmation as the RNN is a data-hungry

model that benefits more from data-rich regimes. We also attempted to add a country identifier

term to our model. For example, We used GDP per capita at the time of prediction as an input

to localize the pooled data to some degree. While this might be expected to reduce bias, it didn’t

improve out-of-sample performance to any degree. This potentially suggests that countries are more

similar than different and the bias of pooling different countries has a limited effect, while adding

in such a covariate leads to more overfitting.

Figure VIII shows the same performance graph for AutoML. The performance gain is not as

easily interpreted as AutoML benefits from the pooled data but can also pick different models that

gain relatively in both data-poor and data-rich regimes. Because of that, the large gains of the

RNN are more representative of performance gains from moving to pooled data on fixed Machine

Learning models. It has the least improvement in performance when using the panel of countries

as training data, with average improvements in RMSE of about 7.5%. Only the first two horizons

show statistically significant forecast performance. It’s worth pointing out that the improvements

are still significant along some horizons, especially in light of nearly state-of-the-art performance
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Figure VIII: Evaluation for AutoML Using Both US Only-Data and Cross-Country
Panel Data

using only US data to begin with. Even so, only in four quarters ahead does the AutoML model

outperform all the baseline models trained on US data. When estimated on world data, AutoML

outperforms all Economic models on all horizons except three quarters ahead and its performance

at one quarter ahead rivals the Survey of Profession Forecasters, despite being estimated only on

lags of GDP, consumption, and unemployment and no real-time data.

VI.D. Summary

The previous sections outlined the performance of all reduced-form, structural, and machine

learning models. This section takes all the data and provides results from a holistic perspective.

We first compare forecasting models using all approaches, estimated on both pooled and US data.

Table 2 demonstrates the effectiveness of the machine learning forecasting methods in data-rich

regimes. AutoML estimated on world data outperforms all baseline Economic models on four

of the five horizons and the RNN outperforms on longer term horizons. We do not report the

maximum likelihood of the Smets-Wouters model, as the original Bayesian parameterization has

better performance than either of our maximum likelihood Smets-Wouters models estimated on

world or US data. Introducing our other DSGE variations would be difficult to justify and would

also have no effect on the results of the horse race. Regardless, all of our models that outperform
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all baseline models on a horizon are bolded. The best-performing model along all horizons was

either an AutoML model or an RNN model, likely because the additional pooled data allowed a

more powerful model to be used without overfitting.

TABLE II: RMSE of Our RNN, AutoML, and Baseline Models

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
VAR(4)

US Data 2.99 3.03 3.10 3.08 3.08
World Data 2.37 2.52 2.56 2.63 2.63

AR(2)
US Data 2.53 2.88 3.03 3.14 3.13
World Data 2.57 2.62 2.67 2.72 2.72

Smets-Wouters DSGE Bayesian
US Data 2.79 2.95 2.89 2.80 2.71

Factor
US Data 2.24 2.48 2.50 2.67 2.86

RNN (Ours)
US Data 3.46 3.37 3.01 3.23 3.30
World Data 2.35 2.52 2.50 2.62 2.60

AutoML (Ours)
US Data 2.41 2.58 2.71 2.45 2.92
World Data 1.97 2.32 2.59 2.62 2.61

SPF Median 1.86 2.11 2.36 2.46 2.65

To illustrate the effect that pooling data has on forecasting, we show a graph that orders RMSE

performance based on increasing model complexity with RMSE performance, comparing the trend

when estimated on US data versus pooled data.

As Figure IX shows, when using increasingly complex models with only the three hundred or so

US timesteps, the most parsimonious model, the AR(2), performs the best and the larger models

get progressively worse. However, when using the pooled data, the picture is entirely different. The

AR(2) model actually performs a little bit worse – but statistically insignificant. However, each

progressively larger model improves in performance. Even if the RMSE decline is less striking in

pooled data, this decline is nevertheless compelling. In fact, despite the appearance of only a small

improvement due to model complexity, the performance of the RNN on pooled data is state-of-the-

art, while the performance of the AR(2) on pooled data is pedestrian. A similar story holds across

other horizons with less striking consistency compared to the one period ahead story.
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Figure IX: RMSE and Model Complexity

We also provide a graph of the forecasts of five of the models: AR(2), Factor, DSGE, RNN, and

AutoML, as well as the true data. This graph is useful in disentangling why our Machine Learning

models outperform. To illustrate the relative strengths of the models, we display the one-quarter

ahead forecasts in Figure X here, and the rest of the graphs are in Appendix B.

Figure X: One Quarter Ahead - Forecasts

AutoML, factor, and RNN models all did a good job at forecasting the Great Recession, with

AutoML forecasting the best at one quarter ahead. The AR(2) and DSGE did not detect a regime

change for the recessionary periods and are also upwardly biased, leading to even worse performance
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during recession onset.5 However, the XGBoost model that performed the best in AutoML was

satisfactory in forecasting the expansions both in terms of the average level as well as individual

movements in the quarterly data. Neither the factor model nor the RNN were able to forecast the

quarter-by-quarter movements with such accuracy. More information about the performance, with

a focus on our RNN model, is labeled in our robustness checks in Appendix G.2.

VII. Conclusion

In this paper, we show how estimating Macroeconomic models on a panel of countries, as

opposed to a single country can significantly improve external validity. Using a panel of countries

as a training set, we statistically improved the RMSE performance of reduced-form models – AR(2),

VAR(1), and VAR(4) – by roughly 12%. We further show that we can make these reduced-form

models more policy/country invariant, suggesting that these models can learn to generalize GDP

forecasting even to countries the model has never been trained on.

We also showed that a similar training set of a panel of countries can improve the external validity

of structural models which again are typically estimated only on a single country of interest. We

focus on the Smets-Wouters model (Smets and Wouters, 2007). Using a panel of countries improves

the forecasting performance of the Smets-Wouters model estimated with maximum likelihood by

roughly 24% averaged across horizons. These results are again statistically significant. We then

demonstrated that we can again improve policy invariance and generalization to out-of-sample

countries by using a panel of countries in our training set. Additionally, we addressed one potential

roadblock to the adoption of pooling country data, which is the fact that the structural parameters

may not be stable across countries and hence the pooled parameter value can only be interpreted

as a mean value. While our results are less conclusive on this front, we argue that based on

forecasting exercises, parameter generalization and stability are likely as good across space as across

time. Finally, concluding our section on structural models, we capitalize on the consistency of

improvements and discuss the likelihood that our results will extend to other estimation techniques

5. More information on the biases and variances of the different models can be found in Appendix F.2.
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like the generalized method of moments, calibration, and Bayesian approaches.

Our last set of results recognizes that our dataset has increased from 300 timesteps to around

3000 timestep countries, showing that nonparametric Machine Learning models are able to outper-

form all the Economic baseline models even after being estimated in this more data-rich regime.

Our RNN outperforms all Economic baselines for horizons longer than two periods ahead. Likewise,

our AutoML model outperforms all baselines for all horizons except for the three quarters ahead.

Combined, the best-performing model over all horizons is either an AutoML model or an RNN

model which suggests there is likely much more room to test other nonparametric models in the

more data-rich Macroeconomic regime.
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VIII. Appendix

A Selected Countries

Countries in reduced-form data set: Australia, Austria, Belgium, Brazil, Canada, Switzerland,

Chile, Columbia, Cyprus, Czech Republic, Germany, Denmark, Spain, Estonia, European Union,

Finland, France, Great Britain, Greece, Hong Kong, Croatia, Hungry, Ireland, Israel, Italy, Japan,

Korea, Luxembourg, Latvia, Mexico, Mauritius, Malaysia, Netherlands, Norway, New Zealand,

Peru, Philippines, Poland, Portugal, Romania, Russia, Singapore, Slovakia, Slovenia, Sweden, Thai-

land, Turkey, USA and South Africa.

Countries in structural data set: Australia, Austria, Belgium, Canada, Chile, Columbia, Ger-

many, Denmark, Spain, Estonia, Finland, France, Iceland, Israel, Italy, Japan, Korea, Lithuania,

Luxembourg, Mexico, Netherlands, New Zealand, Poland, Portugal, Slovakia, Slovenia, Sweden,

USA

B Selected Performance: Graphs

Figure XI: One Quarter Ahead - Forecasts
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Figure XII: Two Quarters Ahead - Forecasts

Figure XIII: Three Quarters Ahead - Forecasts
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Figure XIV: Four Quarters Ahead - Forecasts

Figure XV: Five Quarters Ahead - Forecasts
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C Details on the Survey of Professional Forecasters (SPF)

While our model used the 2020 vintage data, in reality, the forecasters for the Survey of Pro-

fessional Forecasters were working with pseudo-out-of-sample vintages when forecasting over the

entire test. While reproducing this would be possible by using old vintages, it would require esti-

mating the model at every time step of the test set as the data would change every period. We

wanted to avoid this pseudo-out-of-sample forecasting as it would result in estimating 4600 models

instead of 100 at each horizon. Beyond this, the benefit of this increased computation was not clear

as we would still be using 2020 vintage data for countries outside the US, for which old vintages

are difficult or impossible to find. So, it was easier to compare the SPF performance on the 2020

vintage. In addition, all our baseline models including world forecasts were estimated and evaluated

using the 2020 vintage as well. This choice allowed us to compare the SPF performance with the

performance of all the baseline models.

D Detailed Description of Economic Baseline Models

The first model we use is the autoregressive model, AR(n). An oft-used benchmark model, it

estimates a linear relationship using the independent variable lagged N times. In terms of forecasting

ability, this model is competitive with or outperforms the other Economic models in our tests which

is consistent with Diebold (1998). We used an autoregressive model with two lags and a constant

term.

Additionally, we compared the Smets-Wouters 2007 model (Smets and Wouters, 2007), as DSGE

models share many similarities with Recurrent Neural Networks and Smets-Wouters (2007) suggests

that this particular model can outperform VARs and BVARs in forecasting. When running this, we

used the standard Smets-Wouters Dynare code contained in the published paper’s data appendix.

We take the point forecasts from the Smets and Wouters (2007) and use that to forecast. Like

Smets and Wouters (2007), we use Dynare (Adjemian et al., 2011) to solve and estimate the model.

A final model we included in our baseline Economic models was the Factor Model (see Stock

and Watson (2002a) and Stock and Watson (2002b)). In short, the Factor Model approach takes
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a large cross-section of data and uses a technique like principal components analysis to reduce the

dimensionality of the problem. In our case, we concatenate five to eight principal components

based on the information criteria of the high dimensional data with a lagged value of GDP and

regress future GDP. We modified and used the code from FRED-QD as our baseline Factor Model

(McCracken and Ng, 2016). While these models were extremely effective at shorter horizons, they

were also dependent on a large cross-section of economic data with a long history in a country. In

reality, only a few other developed countries have a cross-section of data that would be large enough

to permit using these models as effectively as can be used in the United States. That being said,

factor models do outperform our neural networks at shorter time intervals, and we imagine there

is promise in combining the factor approach with a RNN or AutoML approach.

We also tested the the forecasting performance of vector autoregressions (Sims, 1980). In addi-

tion to displaying performance in our main table, we compared this model and the AR(2) in our 50

countries cross-section test as well. Since we were only forecasting GDP, the vector autoregressive

models used lagged GDP, consumption, and unemployment to forecast the single GDP variable.

All the economic models were estimated on US GDP as is standard. While we ran preliminary

tests on estimating these models on our cross-section of 50 countries, we ran into issues with

estimating both Factor Models and DSGE models this way. However, preliminary results on the

AR(2) model suggest there could be some improvement to using a cross-section even on a three-

parameter AR(2) model. The improvement is not as large as the RNN, which is not surprising as

the RNN has more parameters to take advantage of a larger data set.

E Neural Network Models

E.1 Feed-Forward Neural Network

The feed-forward neural network is the prototypical image associated with deep learning. At

its core, a feed-forward neural network is a recursively nested linear regression with nonlinear

transforms. For example, assume X is a vector-valued input to the neural network and Xout is the

output. In a typical linear regression, Xout = Xinβ1. The insight for composing a feed-forward
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Figure XVI: An Example of a Feed-Forward Neural Network

network is to take the output and feed that into another linear regression: Y = Xoutβ2. In Figure

XVI, Xin would be the input layer, Xout would be the hidden layer and Y would be the output

layer. The problem is not all that interesting if Xout is a scalar. If Xin is a matrix of dimension

timesteps by regressors, Xout can be a matrix of dimension timesteps by hidden units. Here in the

figure, the dimension of the hidden layer is four, so β1 has to be a matrix of dimension three by

four (regressors by hidden units). Thus, we make Xout an input into multidimensional regression

for the second layer, Y = Xoutβ2, if the first layer is a vector regression.6 This can be repeated for

as many layers as desired.

Now a composition of two layers will result in: Y = Xoutβ2 = (Xinβ1)β2. A product of two

matrices is still another matrix, which means the model is still linear. Clearly, this will hold

no matter how many layers are added. However, an early result in the literature showed that

if, between every regression, eg Xout = Xinβ1, one inserts an almost arbitrary nonlinear link

function, this allows a neural network to approximate any continuous function (Hornik, Stinchcombe

and White, 1989). For example, inserting a logistic transformation between Xin and Xout, i.e.

Xout = σ(Xinβ1), where σ(z) = 1
1+e−z , achieves this objective. One can put these nonlinearities as

6. Note: this regression is not a vector autoregression as Xout is a latent variable
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often as one would like to get something like this: Y = σ(σ(Xinβ1,1)β2). These are the fundamental

building blocks of neural networks and allow these models to be universal approximators.

E.2 The Simplest Recurrent Neural Network: A Linear State-Space Model

For the purposes of this paper, associating an RNN with a feed-forward networks will not hinder

comprehension. That being said, without even knowing it, many economists are already familiar

with RNNs. The simplest is a Kalman filter-like linear state-space model. The two equations that

define the linear state-space model are7:

st = st−1U
s + yt−1W

s + bs,(1)

yt = stU
y + yt−1W

y + by(2)

In a linear state-space model, the state si is an unobserved variable which allows the model to

keep track of the current environment. One uses the state, along with lagged values of the observed

variables, to forecast observed variables yi. For example, for GDP, the state could be either an

expansionary period or a recession – a priori, the econometrician does not know. However, one

can make an educated guess based on GDP growth. As Machine Learning is more interested in

prediction, the state is often estimated with point estimates, which allows the data scientist to

sidestep the tricky problem of filtering.

E.3 Estimating the Parameters of a Linear State-Space Model on Data

The two equations that define the linear state-space model are

Yt = D ∗ St + E ∗ Yt−1 + F,(3)

St = A ∗ St−1 +B ∗ Yt−1 + C(4)

We use Equations (3) and (4) to recursively substitute for the model prediction at a particular

7. We add autoregressive lags to make the model more general.
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time period, so the forecast for period 1 then is:

ŷ1 = D ∗ (A ∗ 0 +B ∗ Y0 + C) + E ∗ Y0 + F(5)

and the forecast for period 2 is:

ŷ2 = D ∗ (A ∗ (A ∗ 0 +B ∗ Y0 + C) +B ∗ Y1 + C) + E ∗ Y1 + F(6)

Hatted variables indicate predictions and unhatted variables correspond to actual data. Additional

time periods would be solved by iteratively substituting for the state using Equations (3) and (4) for

the previous state. In order to update the parameters matrices A,B,C,D,E, and F , the gradient

is derived for each matrix and each parameter is updated via hill climbing. We will illustrate the

process of hill climbing by taking the gradient of one parameter B:

∂
∑
∀t L(y − ŷ)

∂B
=
∂L(y1 − ŷ1)

∂B
+
∂L(y2 − ŷ2)

∂B
(7)

Here L() indicates the loss function. Substituting for y′1 and y′2 with Equations (5) and (6) into

(7) and using squared error as the loss function, we arrive at an equation with which we can take

partial derivatives for with respect to A:

(8)
∂

∂B
L =

∂

∂B

1

2
(y1 −D ∗ (A ∗ 0 +B ∗ Y0 + C) + E ∗ Y0 + F )2

+
∂

∂B

1

2
(y2 −D ∗ (A ∗ (A ∗ 0 +B ∗ Y0 + C) +B ∗ Y1 + C) + E ∗ Y1 + F )2

Distributing all the B’s and taking the derivative of (8) results in ∂
∂BL = −(y1−D ∗ (A∗0+B ∗

Y0+C)+E∗Y0+F )∗D∗Y0−(y2−D∗(A∗(A∗0+B∗Y0+C)+B∗Y1+C)+E∗Y1+F )∗(D∗A∗Y0+D∗Y1)
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which provide the gradients for hill climbing. In practice, the derivatives are taken automatically

in code.

E.4 Gated Recurrent Units

GRUs (Cho et al., 2014) were introduced to improve upon the performance over previous RNNs

that resembled linear state-space models and can deal with the exploding gradient problem.

The problem with linear state-space models is that if one does not apply filtering, the state vector

either blows up or goes to a steady state value. This can be seen by recognizing that each additional

timestep results in the state vector getting multiplied by Us an additional time. Depending on if

the eigenvectors of Us are greater than or less than one, the states will ultimately explode (go to

infinity) or go to a steady state. More sophisticated RNNs like the GRU (Cho et al., 2014) we use,

fix this with the use of gates.

First, we redefine sigma as the logistic link function:

σ(x) =
eβx

1 + eβx
(9)

The idea behind the gate is to allow the model to control the magnitude of the state vector. A

simple gated RNN looks like the linear state-space model with an added gate equation:

yt = htU
y + E ∗ yt−1W

y + by(10)

zt = σ(ht−1U
h + yt−1W

h + bh)(11)

st = ht−1U
s + yt−1W

s + bs(12)

ht = zt � st(13)

The output of σ() is a number between zero and one which is element-wise multiplied by st,

the first draft of the state. The operation � indicates element-wise multiplication. Variables are

subscripted with the time period they are observed in (t or t− 1). Weight matrices, which are not
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a function of the inputs, are superscripted with the equation name they feed into. All elements are

considered vectors and matrices, and matrix multiplication is implied when no operation is present.

The presence of the gate controls the behavior of the state, which means that even if the

eigenvalues of Us were greater than one, or equivalently, even if ht would explode without the

gate, the gate can keep the state bounded. Additionally, the steady-state distribution of the state

does not have to converge to a number. The behavior could be periodic, or even chaotic (Zerroug,

Terrissa and Faure, 2013). This allows for the modeling of more complex behavior as well as the

ability of the state vector to “remember” behavior over longer time periods (Chung et al., 2014).

The equations of the gated recurrent unit are:

yt = htU
y + E ∗ yt−1W

y + by(14)

zt = σ(xtU
z + ht−1W

z)(15)

rt = σ(xtU
r + ht−1W

r)(16)

st = tanh(xtU
s + (ht−1 � rt)W

s)(17)

ht = (1− zt)� st + zt � ht−1(18)

Tanh is defined as the hyperbolic tangent:

tanh(x) =
e2∗x − 1

e2∗x + 1
(19)

Like the linear state-space model, the state vector of the gated recurrent unit persists over

timesteps in the model. Mapping these equations to Equation (10)-(13), Equation (18) is the

measurement equation (analogous to Equation (10)). Equation (15) and (16) are both gates and

analogous to Equation (11). Equation (17) is the first draft of the state before the gate zt is applied

and resembles Equation (12). Equation (18) is the final draft of the state after zt is applied and

resembles Equation (13).

The RNN is optimized using gradient descent, where the derivative of the loss function with

respect to the parameters is calculated via the chain rule/reverse mode differentiation. The gradient
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descent optimizer algorithm we use is Adam (Kingma and Ba, 2014), which shares similarities with

a quasi-Newton approach. See Appendix E.7 for more information.

E.5 The Rectified Linear Unit

A nonlinearity used in our architecture, but not in the GRU layers, is the rectified linear unit

(ReLU) (Agarap, 2018). The rectified linear unit is defined as:

ReLU(x) = max(0, x)(20)

The ReLU is the identity operation with a floor of zero much like the payoff of a call option.

Despite being almost the identity map, this nonlinearity applied in a wide enough neural network

can approximate any function (Hornik, Stinchcombe and White, 1989).

E.6 Skip Connections and Batch Norm

Skip connections (He et al., 2015) allow the input to skip the operation in a given layer. The

input is then just added onto the output of the skipped layer, forming the final output of the layer.

This allows the layer being skipped to learn a difference between the “correct” output and input

instead of transforming the input to output. Additionally, if the model is overfitting, the neural

network can learn the identity map easily. Skip connections are used when the input and the output

are the same dimension which allows each input to correspond to one output. Because our network

does not have this property, we learn a linear matrix that converts to the input to the output

dimension. All the skip connections are linear operations and have no activation or batch norm,

which differs from the pair of dense layers at the beginning of the network, which have both batch

norm and rectified linear unit activations.

Batch normalizing (Ioffe and Szegedy, 2015) is used to prevent the drift of output through a

deep neural network. Changes to parameters in the early layers will cause an outsized effect on the

output values for the later layers. Batch norm fixes this problem by normalizing the output to look

like a standard normal distribution after the output of each layer. Thus the effect of changes in
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parameters will not greatly affect the magnitude of the output vector as between each output the

data is re-normalized to have a mean of 0 and a standard deviation on 1.

E.7 Adam Optimizer

Adam combines momentum (Polyak, 1964) – a technique that uses recent history to smooth out

swings orthonormal to the objective direction – with RMSprop (Tieleman and Hinton, 2012) – a

technique used to adjust step size based on gradient volatility.

Traditional gradient descent hill climbing updates the parameters with a single equation:

θt = θt−1 − λ ∗ ∇θLθ(x, y)(21)

Here ∇θLθ(x, y) denotes taking the gradient of the loss with respect to θ, the parameters of the

model. For convenience, I will denote this term gt. By subtracting the gradient multiplied by a

small step size, λ, one moves the parameters, θ, in the direction that reduces the loss the most.

If we wanted to use information from the second derivative to inform optimization, we can use

Newton-Raphson instead:

θt = θt−1 −H−1t ∗ gt(22)

This uses the Hessian to determine an optimal step size based on steepness in the loss function.

Typically, this approach is not used in deep learning as deep learning models typically have a large

number of parameters, and calculating the Hessian has a quadratic cost in the number of parameters

and inverting also has a super-linear cost. However, there are quasi-Newton methods that attempt

to approximate the Hessian to determine the step size without the high computational cost. Adam

is similar to these methods. The equations that define Adam are as follows:
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νt = β1 ∗ νt−1 − (1− β1)gt(23)

st = β2 ∗ st−1 − (1− β2) ∗ g2t(24)

δθt = −η νt√
st + ε

∗ gt(25)

θt+1 = θt + δθt(26)

The first equation is a moving average of the gradient. This “momentum” term is used because

often in training the direction of the gradient would move nearly perpendicular to the direction

towards the optimum. Gradient descent would spend a lot of time zig-zagging while only making

slow progress towards an optimum (see Figure XVII). Taking a moving average of previous gradients

preserves the principal direction while the orthogonal directions cancel each other out.

Figure XVII: Momentum

Likewise, the st equation is a moving average approximation for the Hessian. The approximate

Hessian is used for adjusting the step size of the algorithm based on the curvature of the loss function

at a given point. β1 and β2 are hyperparameters that determine the smoothness of the moving

average. Again, the resulting update term is applied to the previous values of the parameters. This

approach is empirically shown to lead to more stable optimization and even better optima than

simpler gradient descent approaches for large networks.
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F Additional Forecasting Information

F.1 Information Content Regressions

We regress true GDP on a varying collection of forecasts to test for statistically significant

contribution of a given forecast like our gated recurrent unit model. An interpretation of significant

coefficients would be that the given forecast method adds statistically significant information when

pooled with the other regressions.
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Here is the H2O forecast compared to the SPF on the baseline test set ranging from one-quarter

ahead forecasts to five-quarters ahead:

TABLE III

Real GDP Growth

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

SPF 0.796∗∗∗ 1.554∗∗∗ 3.042∗∗∗ 2.888∗∗∗ 1.218
(0.238) (0.346) (0.607) (0.742) (1.025)

H2O 0.505∗∗ 0.564 0.511 0.213 0.337
(0.236) (0.399) (0.571) (0.669) (0.666)

N 46 46 46 46 46
R2 0.532 0.474 0.409 0.271 0.033
Adjusted R2 0.510 0.449 0.382 0.237 −0.012
Residual Std. Error (df = 43) 1.790 1.898 2.012 2.235 2.573
F Statistic (df = 2; 43) 24.464∗∗∗ 19.366∗∗∗ 14.879∗∗∗ 7.997∗∗∗ 0.743

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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The following table contains regressions comparing the information content of the H2O and

baselines, excluding the SPF:

TABLE IV

Real GDP Growth

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

H2O 0.778∗∗∗ 1.385∗∗∗ 1.198∗ 0.665 0.151
(0.259) (0.427) (0.691) (0.779) (0.684)

DSGE 0.724 −0.041 0.138 0.047 0.081
(0.478) (0.581) (0.647) (0.679) (0.712)

AR2 −0.554 −1.102 −0.981 −0.797 −1.576
(0.438) (0.781) (1.759) (1.088) (1.634)

Factor 0.358∗ 0.657∗ 0.898 0.501 0.506
(0.188) (0.354) (0.539) (0.323) (0.463)

N 46 46 46 46 46
R2 0.501 0.291 0.127 0.070 0.031
Adjusted R2 0.453 0.222 0.041 −0.021 −0.063
Residual Std. Error (df = 41) 1.893 2.257 2.505 2.586 2.638
F Statistic (df = 4; 41) 10.307∗∗∗ 4.202∗∗∗ 1.485 0.767 0.329

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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This final table performs the same regression but has the SPF, H2O, and all baseline models:

TABLE V

REAL

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

H2O 0.614∗∗ 0.629 0.495 0.233 0.254
(0.239) (0.403) (0.594) (0.693) (0.689)

SPF 1.071∗∗∗ 1.648∗∗∗ 3.085∗∗∗ 2.835∗∗∗ 1.256
(0.326) (0.394) (0.693) (0.776) (1.145)

DSGE 0.544 −0.141 −0.220 −0.332 −0.123
(0.433) (0.492) (0.542) (0.605) (0.734)

AR(2) −1.029∗∗ −0.981 0.776 −0.749 −1.672
(0.420) (0.660) (1.509) (0.954) (1.632)

Factor 0.003 0.115 0.101 0.321 0.418
(0.201) (0.326) (0.481) (0.287) (0.469)

N 46 46 46 46 46
R2 0.607 0.506 0.416 0.302 0.059
Adjusted R2 0.558 0.445 0.343 0.215 −0.058
Residual Std. Error (df = 40) 1.701 1.907 2.074 2.267 2.632
F Statistic (df = 5; 40) 12.363∗∗∗ 8.208∗∗∗ 5.697∗∗∗ 3.467∗∗ 0.505

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

None of the models except the SPF have consistent statistically significant information above

and beyond the other models.
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F.2 Bias and Variance in the Forecasting Models

The following table contains the mean bias as well as the variance of the models. For the gated

recurrent unit, we use the median forecast:

TABLE VI

Forecast Bias

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

RNN Bias 0.459 0.480 0.506 0.620 0.644
Variance 5.51 6.34 6.23 6.85 6.75

H2O Bias 0.293 0.511 0.833 0.723 0.422
Variance 3.86 5.36 6.70 6.88 6.80

SPF Bias 0.331 0.600 0.723 0.804 0.901
Variance 3.48 4.46 5.57 6.07 7.04

DSGE Bias 1.75 1.93 1.88 1.78 1.65
Variance 9.32 10.77 10.76 10.42 9.99

AR2 Bias 0.404 0.389 0.431 0.472 0.481
Variance 6.61 6.88 7.12 7.40 7.41

VAR4 Bias 0.233 0.214 0.201 0.200 0.195
Variance 5.63 6.36 6.56 6.89 6.91

Factor Bias 0.432 0.163 0.459 0.533 0.699
Variance 5.03 6.17 6.26 7.12 8.19
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F.3 Parameter Comparison across US DSGE Model and World DSGE Model

The table shows the parameters of the DSGE model estimated on world data versus US data

as well as the standard deviations of the parameters over time. This illustrates the important

parameters that change when adding in global data. In addition to the model growing less confident

and more accurate when world data is added, the parameters that are most modified are parameters

governing wage stickiness and inflation.
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Dynare Variable Variable Description World Param Values US Param Values World Standard Deviation US Standard Deviation
’ea’ Factor Productivity Shock Error 0.976842 0.474861 0.034192 0.014886
’eb’ Risk Permium Shock Error 0.522046 0.260422 0.022821 0.115139
’eg’ Government Spending Shock Error 1.002773 0.659571 0.028303 0.017909
’eqs’ Technology Shock Error 1.377699 0.426465 0.114479 0.033718
’em’ Monetary Policy Shock Error 0.202341 0.209711 0.018569 0.005405
’epinf’ Inflation Shock Error 0.785736 0.184302 0.034779 0.019632
’ew’ Wage Shock Error 0.595469 0.316343 0.107472 0.023861
’crhoa’ AR Parameter on productivity Shock 0.997478 0.984393 0.002449 0.003019
’crhob’ AR Parameter on Risk Premium Shock 0.132395 0.383984 0.039344 0.332214
’crhog’ AR Parameter on Government Shock 0.984414 0.980403 0.009976 0.009258
’crhoqs’ AR Parameter on Technology Shock 0.688845 0.776188 0.109162 0.027836
’crhoms’ AR Parameter on Monetary Shock 0.30509 0.148434 0.02064 0.041207
crhopinf’ AR Parameter on Inflation Shock 0.611081 0.977832 0.032108 0.024071
’crhow’ AR Parameter on Wage Shock 0.982497 0.899716 0.010334 0.045943
’cmap’ AR Moving Average Error Term on Inflation 0.539008 0.875734 0.038097 0.058007
’cmaw’ AR Moving Average Error Term on Wages 0.970411 0.882725 0.011541 0.046395
’csadjcost’ Elasticity of the Capital Adjustment Cost 9.80101 8.15361 0.8643 1.03545
’csigma’ Elasticity of Subsitution 1.978862 1.895245 0.166713 0.253334
’chabb’ Habbit Formation 0.868449 0.663259 0.016705 0.173953
’cprobw’ Wage Flexibility Probability 0.930401 0.924096 0.028501 0.031956
’csigl’ Wage Elasticity of Labor Supply 1.749702 3.763315 0.471358 1.127552
’cprobp’ Price Flexibility Probability 0.945883 0.663557 0.005239 0.034912
’cindw’ Wage Indexation 0.01 0.635949 5.26E-18 0.14763
’cindp’ Indexation to Past Inflation 0.01 0.13723 5.26E-18 0.123999
’czcap’ Elasticity of Capital Utilization 0.364196 0.812247 0.194422 0.080674
’cfc’ Fixed Costs in Production 2.040895 1.93295 0.0107 0.141187
’crpi’ Taylor Rule Inflation 1 2.114895 0 0.321337
’crr’ Taylor Rule Interest Rate Smoothing 0.966891 0.912953 0.011906 0.016476
’cry’ Taylor Rule Output Gap 0.315889 0.118081 0.110856 0.063766
’crdy’ Taylor Rule Output Gap Change 0.024124 0.15335 0.006121 0.030106
constepinf’ Gap between Model and Observed Inflation 0.187268 1.240916 0.023902 0.2128
’constelab’ Gap between Model and Observed Labor 2.993805 0.640214 0.998992 1.963757
’ctrend’ Gap between Model and Observed Output 0.34744 0.426019 0.038315 0.026315
’cgy’ Productivity Shocks on Government Spending 0.480685 0.550493 0.058911 0.01411
’calfa’ Elasticity of Capital in Production Function 0.091021 0.212888 0.015633 0.02167
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G Selected Additional Information

G.1 Smets-Wouters Model: US Data vs. World Data

TABLE VII: Smets-Wouters Root Mean Squared Error

The performance forecasts for the Smets-Wouters model on the test set 2009-Q1
to 2020-Q1 (Lower is better)

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Smets-Wouters DSGE Max Like

US Data 3.83 4.36 4.49 4.50 4.2
World Data 3.05*** 3.28*** 3.28*** 3.22** 3.16*
Out-Of-Sample Data 2.59*** 2.75*** 2.89** 3.04 3.18
1995+ 2.77*** 3.09** 3.22* 3.26 3.28

Smets-Wouters DSGE Bayesian
US Data 2.79 2.95 2.89 2.80 2.71

∗ Significance indicates outperformance of world data models over US data models

G.2 Recurrent Neural Network Robustness Checks

For our RNN model, we found we could improve forecasting performance by taking the mean

prediction of many models estimated by stochastic gradient descent. The ensembling improves

performance slightly, but later graphs will show it also improves model stability and variance.

Bolded entries indicate outperformance over all Economic models.

TABLE VIII: RNN Mean, Median and Best forecasts

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
RNN with World Data

Best Model 2.4 2.5 2.5 2.6 2.6
Mean Model 2.3 2.5 2.5 2.6 2.6
Median Model 2.3 2.5 2.5 2.6 2.6

We provide a Monte Carlo simulation (Table IX), estimating our RNN model at each time

horizon 100 times. At every horizon, the average root mean squared error of our simulated models

indicates competitive, if not outperformance, against baseline models. Interestingly, it seems like

the best-performing model on validation data, when tested on the test data, often performs worse
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than the average performance over all the models. This is something that should be investigated

further, but based on this phenomenon, we recommend that practitioners take a simple mean or

median forecast across many different models.

TABLE IX: Baseline RNN Monte Carlo Simulation over Initializations

The mean and standard deviation of the performance of GRUs on the test set
2009-Q1 to 2020-Q1

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Mean RMSE 2.4 2.6 2.5 2.6 2.6*
Std Dev RMSE 0.06 0.06 0.05 0.06 0.06

A common criticism of deep learning attempts at forecasting is that the models are unreliable,

but due to high variance, one can p-hack a model that performs well. The Monte Carlo simulation

in Table IX, anticipates this critique. The standard deviation of our RMSE is 0.06 which suggests

that all our models have a similar performance on the test set when optimization is complete. This

cannot resolve all issues, as the Monte Carlo result only deals with numerical instability. The model

could still fit this particular data window or architecture choice, due to chance. In order to respond

to those critiques, we also provide robustness checks across different architectures and data periods.

One test we performed was to replace the GRU with a long short-term memory (LSTM) layer

(Hochreiter and Schmidhuber, 1997) – another type of RNN. We use the same test data as the

main result (USA 2009-Q1 to 2020-Q1) as well as the same data as inputs. The LSTM in Table X

are analogous to the gated recurrent unit neural networks models in the table in Section VI.C. in

the main text. Mean RMSE and standard deviation RMSE correspond to the entries in the table

below. The baseline performances are still the same as the test set has not changed.

The LSTM networks outperform the baseline models along essentially the same time horizons.

Performance is also competitive, but consistently a little worse than the gated recurrent unit over

all time frames. The LSTM has a similar standard deviation of root mean squared error, suggesting

that the two models consistently find a similar optimum when it comes to forecasting. Again, taking

a model average through the mean or median forecast results in small but consistent root mean

squared error performance improvements.
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TABLE X: Baseline LSTM Monte Carlo Simulations

The performance of the best, mean, and median forecasts as well as the mean and
standard deviation of the long short-term memory networks on the test set

2009-Q1 to 2020-Q1 (lower is better)

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Best RMSE 2.4 2.6 2.6 2.6 2.6*
RMSE of Mean 2.4 2.6 2.5 2.6 2.6*
RMSE of Median 2.4 2.5 2.5 2.6 2.6*
Mean RMSE 2.4 2.6 2.5 2.6 2.6*
Std Dev RMSE 0.05 0.07 0.05 0.06 0.06

Additionally, we re-estimate the model with the slightly different test set from 2009-Q4 to 2019-

Q4 as opposed to 2008-Q4 to 2020-Q1, comparing the benchmark economic models to our original

GRU (Table XI). The reason we use this alternative training set is that it contains no recessions.

Since the highly flexible neural network will have an advantage in forecasting periods with a sig-

nificant departure from a more linear-friendly period of expansion. Removing the recessions would

hamstring our model compared to the more linear model baselines.

Our gated recurrent units were completely re-estimated as we additionally included 2009-Q1 to

2009-Q3 in the validation set. Performance would improve if we left those (recession) timesteps

out of the validation set as the test set contains no recessions. However, this decision cannot be

rationalized from the point-of-view of an out-of-sample forecaster. Although this version of our

model did not outperform the best baseline models along any horizon, considering performance

over all horizons, we think our median and mean models are better than the US AR(2), VAR(1),

and the Factor Model on this test set, while performing slightly worse than the DSGE model and

the world AR(2). This supports our hypothesis that the main outperformance of our model was in

highly nonlinear domains like recessions and other regime changes although using the cross-sectional

data reduced the tendency for the models to be biased upwards and was a contributor to the RNN’s

outperformance over models trained only on US data.

This provides supplementary evidence that the outperformance of our neural network is not

due to either over-fitting the test set or over-fitting the architecture choice. Additionally, we ran

Monte Carlo simulations (Table XII) which show that given one hundred random initialization and
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TABLE XI: Expansion Root Mean Squared Error

Performance of the Best, Mean, and Median forecasts for gated recurrent units
on the test set 2009-Q4 to 2019-Q4

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
VAR(1)

US data 2.3 2.6 2.9 3.0 3.0
World data 2.1 2.2 2.2 2.2 2.2

AR(2)
US data 1.7 1.7 1.8 1.9 1.9
World data 1.6 1.6 1.6 1.5 1.5*

Smets Wouters DSGE
US data 1.8 1.8 1.7 1.6 1.5*

Factor
US data 1.6 1.6 1.6 1.9 2.1

RNN*
Best 1.8 2.3 2.0 2.0 1.9
Mean Forecast 1.7 1.7 1.7 1.7 1.7
Median Forecast 1.7 1.7 1.7 1.7 1.7

SPF Median 1.4 1.5 1.5 1.5 1.5

∗All RNN models use entire world data cross-section
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optimization routines over all five horizons, the model still consistently achieves low root mean

squared error and has a low standard deviation – demonstrating stability and reproducibility.

TABLE XII: Expansion RNN Monte Carlo Simulations

The mean and standard deviation of the performance of gated recurrent units on
the test set 2009-Q4 to 2019-Q4

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Mean RMSE 1.8 1.8 1.8 1.8 1.7
Std Dev RMSE 0.18 0.18 0.21 0.11 0.08
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