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I. Introduction

A central problem in both reduced-form and Structural Macroeconomics is the dearth of un-

derlying data. For example, GDP is a quarterly dataset that only extends back to the late 1940s,

around 300 timesteps. Thus generalization and external validity of these models are a pertinent

problem. In forecasting, this approach is partially addressed by using simple linear models. In

structural macroeconomics, the use of micro-founded parameters and Bayesian estimation attempts

to improve generalization to limited effect. More flexible and nonparametric models would likely

produce more accurate forecasts, but with limited data, this avenue is not available. However,

pooling data across many different countries allows economists to forecast and even estimate larger

structural models which have both better external validity and forecasting when predicting GDP,

without having to compromise on internal validity or model design.

This paper sets out to answer a series of questions stemming from the main question: If and

how does pooled data from across many (50+) countries improve the GDP forecasting performance

of linear, structural, and machine learning models? A bias and variance trade-off is occurring. On

the one hand, GDP data is correlated across countries and many structural and machine learning

models have many parameters making them prone to overfitting. On the other hand, countries are

different and pooling may lead to bias.

Focusing on US GDP prediction, we use a US-only data-set (211 timesteps), a world data set

containing economic data from the US and 49 other countries (2581 timestep-countries in total),

and a country out-of-sample data set that is the world dataset without US data (2370 timestep-

countries). In most cases, the model estimated on world data outperforms the model estimated on

the US-only data set in out-of-sample forecasting of US GDP. These results also hold across less

flexible and smaller models like Autoregressive (AR) or Vector Autoregressive (VAR) models, but

the improvement is more limited.

More interestingly, models estimated on the world data set ex-US, often outperforms the world

data even though world data contains additional US data, directly relevant to US GDP forecasting.

This result suggests data pooling many countries across space, may be more informative than one
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country extending across a longer gap in time. For example 50 years in the past. A central result

of this paper contained in part of results Section VI.B. and part of the Section VI.A. suggests US

economic data in the 1970s seems to bias US GDP forecasts in the 2020s more than, for example,

French economic data in 2010s. This empirical result is in direct contrast to the theory that

suggests estimating pooled countries’ data will lead to parameter estimates that don’t correspond

to economic primitives and will lead to models that are more mismatched concerning the true

structural model (Pesaran and Smith, 1995).

Finally, we run a horserace among all models. Model improvement indicates that while these ap-

proaches are competitive in the low data regime, machine learning methods consistently outperform

baseline economic models – VAR(1), VAR(4), AR(2), Smets-Wouters (Smets and Wouters, 2007),

and Factor models – in the high data regime. Over most horizons, our ML models approach SPF

median forecast performance, albeit evaluated on 2020 vintage data (see Appendix C), resulting in

outperformance over SPF benchmark at 5 quarters ahead.

The paper proceeds as follows: Section II. reviews the literature on forecasting and Recurrent

Neural Networks (RNNs) and describes how our paper merges these two fields; Section III. discusses

Feed-Forward Neural Networks, linear state-space models, and gated recurrent units (Cho et al.,

2014); Section III.F. briefly mentions our model architecture; Section IV. discusses the benchmark

Economic models and the SPF (Philadelphia Federal Reserve, 1968) that we compare our model to;

Section V. describes the data; Section VI. and Appendix I.2 provide the main results and robustness

checks, and Section VII. concludes the paper.

II. Literature Review

This paper connects multiple strands of literature: Machine Learning, time-series econometrics,

and panel Macroeconomic analysis. I will focus on the economic literature here and discuss the

machine learning methods in the methods section.
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II.A. Economic Models

One advancement in forecasting stems from the greater adoption of structural or pseudo-

structural time series models like the Smets-Wouters DSGE models (Smets and Wouters, 2007).

While DSGE forecasting is widely used in the literature, it is competitive with, but often no bet-

ter than, a simple AR(2), with more bespoke DSGE models performing poorer (Edge, Kiley and

Laforte, 2010). However, the use of DSGE models for counterfactual analysis is an important and

unique benefit of these models. The final economic baseline is the Factor Model (Stock and Wat-

son, 2002a), which attempts to use a large cross-section of data resulting in a more comprehensive

picture of the economy to perform forecasting.

Our paper uses tools from forecast evaluation –West (1996), Pesaran and Timmermann (1992),

and Diebold and Mariano (2002) – as well as model averaging – Koop, Leon-Gonzalez and Strachan

(2012), Timmermann (2006), and Wright (2008). Details on all these models and our implementa-

tion can be found in Appendix D.

Moving to structural economics, there is little literature on panel data and dynamic general

equilibrium models (Breitung, 2015). Most of it focuses on the use of panel data to better identify

the effects of interest across countries. There is also literature looking at specific panel models

applied to Macroeconomics like dynamic panel models – Doran and Schmidt (2006), Bai and Ng

(2010), and Diebold, Rudebusch and Aruoba (2006).

III. Methods: Machine Learning Models

We use two main Machine Learning methods. First, we use a recurrent neural network (RNN)

model, mainly the Gated Recurrent Unit (GRU) (Cho et al., 2014), but also Long Short-Term

Memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997a) as a robustness check. Second,

we apply AutoML (Hutter et al., 2014), an automated algorithm that estimates and compares many

machine learning models.
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III.A. Automated Machine Learning (AutoML)

Automated Machine Learning (AutoML) software is designed to provide end-to-end solutions

for Machine Learning problems by training and evaluating many different models and ultimately

returning the best models in order of performance. We just used the default H2o AutoML library’s

collection of models for our estimation routine. The approach automates the process of picking and

training a host of models and produces a top-performance leaderboard. To provide a proxy for the

performance of a good and flexible Machine Learning model, we tested the open-source Automated

Machine Learning (AutoML) software H2O1. We created a pipeline for each prediction horizon,

trained the model using our international cross-sectional data, evaluated on US GDP validation

data, and lastly, predicted using our US GDP data test set. In contrast with our own custom

model, setting up H2O and training on our dataset was almost entirely automated. A consequence

is that AutoML is automated makes unintentional p-hacking difficult.

From predicting one quarter to five quarters ahead, the AutoML software picked the model for

each horizon: XGBoost, gradient boosting machine, gradient boosting machine again, distributed

random forest, and deep learning, respectively. We noticed that the software generally picked deep

learning models for the quarters that were further away while picking gradient-boosting techniques

for closer quarters. Ultimately, AutoML had strong results and can be applied to other prediction

problems in economics.

Additionally, because the AutoML selects a different model for a given horizon and data set size,

we also estimated a GRU RNN on both the reduced USA dataset and the pooled world data set.

This allows us to show the effect of the increase in data size holding the model architecture fixed.

The RNN also has the advantage of not being a model considered by AutoML, which gives broader

coverage of the universe of Machine Learning models that are being considered in our paper.

4



Figure I: An Example of a Feed-Forward Neural Network

III.B. Neural Network Models

III.B..1 Feed-Forward Neural Network

The feed-forward neural network is the prototypical image associated with deep learning. At

its core, a feed-forward neural network is a recursively nested linear regression with nonlinear

transforms. For example, assume Xin is a vector-valued input to the neural network and Xout is

the output. In a typical linear regression, Xout = Xinβ1. In deep learning parlance, this linear

relationship between input and output is one layer. The insight for composing a feed-forward

network is to take the output and feed that into another linear regression: Y = Xoutβ2, i.e., a

higher layer. In Figure I, Xin would be the input layer, Xout would be the hidden layer and Y

would be the output layer. The problem is not all that interesting if Xout is a linear equation. If

Xin is a matrix of dimension timesteps by regressors, Xout can be a matrix of dimension timesteps

by hidden units. Here in the figure, the dimension of the hidden layer is four, so β1 has to be

a matrix of dimension three by four (regressors by hidden units). Thus, we make Xout an input

into a multidimensional regression for the second layer, Y = Xoutβ2, if the first layer is a vector

1. https://www.h2o.ai/
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regression.2 This can be repeated for as many layers as desired.

Now a composition of two layers will result in: Y = Xoutβ2 = (Xinβ1)β2. A product of two

matrices is still another matrix, which means the model is still linear. Clearly, this will hold

no matter how many layers are added. However, an early result in the literature showed that

if, between every regression, eg Xout = Xinβ1, one inserts an almost arbitrary nonlinear link

function, this allows a neural network to approximate any continuous function (Hornik, Stinchcombe

and White, 1989). For example, inserting a logistic transformation between Xin and Xout, i.e.

Xout = σ(Xinβ1), where σ(z) = 1
1+e−z , achieves this objective. One can put these nonlinearities as

often as one would like to get something like this: Y = σ(σ(Xinβ1,1)β2). These are the fundamental

building blocks of neural networks and allow these models to be universal approximators.

III.C. The Simplest Recurrent Neural Network: A Linear State-Space

Model

Without even knowing it, many economists are already familiar with RNNs. The simplest is a

Kalman filter-like linear state-space model. The two equations that define the linear state-space

model are3:

st = st−1U
s + yt−1W

s + bs,(1)

yt = stU
y + yt−1W

y + by(2)

In a linear state-space model, the state si is an unobserved variable that allows the model to

keep track of the current environment. One uses the state, along with lagged values of the observed

variables, to forecast observed variables yi. For example, for GDP, the state could be either an

expansionary period or a recession – a priori, the econometrician does not know. However, one

can make an educated guess based on GDP growth. As Machine Learning is more interested in

prediction, the state is often estimated with point estimates, which allows the data scientist to

2. Note: this regression is not a vector autoregression as Xout is a latent variable
3. We add autoregressive lags to make the model more general.
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sidestep the tricky problem of filtering.

III.D. Estimating the Parameters of a Linear State-Space Model on

Data

The two equations that define the linear state-space model are

Yt = D ∗ St + E ∗ Yt−1 + F,(3)

St = A ∗ St−1 +B ∗ Yt−1 + C(4)

We use Equations (3) and (4) to recursively substitute for the model prediction at a particular

period, so the forecast for period 1 then is:

ŷ1 = D ∗ (A ∗ 0 +B ∗ Y0 + C) + E ∗ Y0 + F(5)

and the forecast for period 2 is:

ŷ2 = D ∗ (A ∗ (A ∗ 0 +B ∗ Y0 + C) +B ∗ Y1 + C) + E ∗ Y1 + F(6)

Hatted variables indicate predictions and unhatted variables correspond to actual data. Additional

periods would be solved by iteratively substituting for the state using Equations (3) and (4) for the

previous state. To update the parameters matrices A,B,C,D,E, and F , the gradient is derived

for each matrix and each parameter is updated via hill climbing. We will illustrate the process of

hill climbing by taking the gradient of one parameter, B:

∂
∑
∀t L(y − ŷ)

∂B
=
∂L(y1 − ŷ1)

∂B
+
∂L(y2 − ŷ2)

∂B
(7)
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Here L() indicates the loss function. Substituting for y′1 and y′2 with Equations (5) and (6) into

(7) and using squared error as the loss function, we arrive at an equation with which we can take

partial derivatives for with respect to A:

(8)
∂

∂B
L =

∂

∂B

1

2
(y1 −D ∗ (A ∗ 0 +B ∗ Y0 + C) + E ∗ Y0 + F )2

+
∂

∂B

1

2
(y2 −D ∗ (A ∗ (A ∗ 0 +B ∗ Y0 + C) +B ∗ Y1 + C) + E ∗ Y1 + F )2

Distributing all the B’s and taking the derivative of (8) results in ∂
∂BL = −(y1−D ∗ (A∗0+B ∗

Y0+C)+E∗Y0+F )∗D∗Y0−(y2−D∗(A∗(A∗0+B∗Y0+C)+B∗Y1+C)+E∗Y1+F )∗(D∗A∗Y0+D∗Y1)

which provide the gradients for hill climbing. In practice, the derivatives are taken automatically

in code.

III.E. Gated Recurrent Units (GRUs)

GRUs (Cho et al., 2014) were introduced to improve upon the performance over previous RNNs

that resembled linear state-space models and can deal with the exploding gradient problem.

The problem with linear state-space models is that if one does not apply filtering, the state vector

either blows up or goes to a steady state value. This can be seen by recognizing that each additional

timestep results in the state vector getting multiplied by Us an additional time. Depending on if

the eigenvectors of Us are greater than or less than one, the states will ultimately explode (go to

infinity) or go to a steady state. More sophisticated RNNs, like the GRU (Cho et al., 2014) used

in this paper, fix this with the use of gates.

First, we redefine σ as the logistic link function gate:

σ(x) =
eβx

1 + eβx
(9)

The idea behind the gate is to allow the model to control the magnitude of the state vector. A

simple gated RNN looks like the linear state-space model with an added gate equation:
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yt = htU
y + E ∗ yt−1W

y + by(10)

zt = σ(ht−1U
h + yt−1W

h + bh)(11)

st = ht−1U
s + yt−1W

s + bs(12)

ht = zt � st(13)

The output of σ() is a number between zero and one which is element-wise multiplied by st,

the first draft of the state. The operation � indicates element-wise multiplication. Variables are

subscripted with the period they are observed in (t or t − 1). Weight matrices, which are not a

function of the inputs, are superscripted with the equation name they feed into. All elements are

considered vectors and matrices, and matrix multiplication is implied when no operation is present.

The presence of the gate controls the behavior of the state, which means that even if the

eigenvalues of Us were greater than one, or equivalently, even if ht would explode without the

gate, the gate can keep the state bounded. Additionally, the steady-state distribution of the state

does not have to converge to a number. The behavior could be periodic, or even chaotic (Zerroug,

Terrissa and Faure, 2013). This allows for the modeling of more complex behavior as well as the

ability of the state vector to “remember” behavior over longer time periods (Chung et al., 2014).

The equations of the gated recurrent unit are:

yt = htU
y + E ∗ yt−1W

y + by(14)

zt = σ(xtU
z + ht−1W

z)(15)

rt = σ(xtU
r + ht−1W

r)(16)

st = tanh(xtU
s + (ht−1 � rt)W

s)(17)

ht = (1− zt)� st + zt � ht−1(18)
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Tanh is defined as the hyperbolic tangent:

tanh(x) =
e2∗x − 1

e2∗x + 1
(19)

Like the linear state-space model, the state vector of the gated recurrent unit persists over

timesteps in the model. Mapping these equations to Equation (10)-(13), Equation (18) is the

measurement equation (analogous to Equation (10)). Equation (15) and (16) are both gates and

analogous to Equation (11). Equation (17) is the first draft of the state before the gate zt is applied

and resembles Equation (12). Equation (18) is the final draft of the state after zt is applied and

resembles Equation (13).

The RNN is optimized using gradient descent, where the derivative of the loss function with

respect to the parameters is calculated via the chain rule/reverse mode differentiation. The gradient

descent optimizer algorithm we use is Adam (Kingma and Ba, 2014), which shares similarities with

a quasi-Newton approach. See Section G for more information.

III.F. Our Neural Network Model Architecture

Figure II is the picture of our RNN model we use to supplement AutoML based on the Gated

Recurrent Unit (GRU) model, described in Section III.E.. The input comes from the top, passes

through all the lines and boxes and produces an output from Dense(6) which is forecast for time

horizons 1 through 6. Lines between boxes indicate the output of the higher box flows into the input

of the lower box. There are Add boxes that add two inputs, Dense boxes which are Feedforward

layers (See III.B..1), GRU boxes which are the GRU RNN (See III.E.), Concatenate boxes which

combine the covariates from two different outputs, and Batch Normalization discussed in Section

F. We use rectified linear unit (Agarap, 2018) activation (see section E) between dense layers.

We used the GRU architecture over the more common Long-Short Term Memory (Hochreiter and

Schmidhuber, 1997b) as the GRU outperformed on validation data. While systematic architectural

design was not implemented, basic architectural modifications were applied and evaluated on the

validation set to get an ultimate structure.
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Figure II: Our RNN Model Architecture
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Our model contains parallel dense layers between each operation; the layers were originally skip

connections (He et al., 2015), but we modified them to allow for learning of linear parameters.

The final skip connection concatenates the input with the output of the network so that the neural

network would nest a VAR(1) model. The concatenate operation before the final Dense(6), which is

a set of linear parameters, multiplies both the output of the GRU alomg with the input. In this final

layer, if the parameters evaluating the output of the GRU are 0, and the parameters learned for the

input in the final concat agree with the VAR(1) parameters, this model nest a VAR(1). Thus one

can initialize parameters in this way to give the GRU model a good starting forecast. Ultimately,

our model comprises about 17,000 parameters which explain the comparative outperformance in

our data-rich cross-sectional world dataset.

IV. Economic Models

We tested the predictive power of a series of machine learning and traditional macroeconomic

models estimated on our panel of countries using our novel data pooling method. We found that the

more complex the model, the more our data augmentation helped. The machine learning models

tended to be more flexible, but even among economic models, the trend still held. Additionally, we

provided comparisons to the Survey of Professional Forecasters (SPF)(Philadelphia Federal Reserve,

1968) median GDP forecast, which is seen as a proxy for state-of-the-art performance. While we

forecast the most recent GDP vintage, we do not use older vintages for older data. While this

may result in a minor apples-to-oranges comparison with SPF, it is difficult to update vintages

for the panel of 50 countries, most of which have documentation written in other languages. A

discussion of the Survey of Professional Forecasters and our attempt to evaluate their forecasts

is contained in Appendix C. The baseline economic models we used are the AR(2) autoregressive

model, a VAR(4)/VAR(1), a Bayesian VAR (BVAR) model (Litterman, 1981), a Factor model

(Stock and Watson, 2002a), (Stock and Watson, 2002b) (Sims, 1980), and the Smets-Wouters 2007

DSGE model (Smets and Wouters, 2007),.
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Discussing the models more thoroughly, the formula for the AR(2) model is:

GDPt = β0 + β1 ∗GDPt−1 + β2 ∗GDPt−2

The AR(2) model is an autoregressive model for GDP with 2 lags.

The formula for the VAR(1) model is:

GDPt = β0 + β1 ∗Xt−1

where Xt−1 is a vector of data containing: GDPt−1, Consumptiont−1, and Unemploymentt−1.

The VAR(4) contains the GDP, Consumption and Unemployment for four time lags rather than

one. The VAR(4) was chosen by cross-validation to be the best number of lags for out of sample

prediction.

The BVAR was calculated with a Litterman prior (Litterman, 1981), where I regularized around

1 for the lagged GDP term and around zero for all other terms:

GDPt = β0 + β1 ∗Xt−1 + λ ∗ ||β1[0]− 1, β1[6= 0]||i

The ||.||i indicates the i norm. I use both i = 1 and i = 2 and test both Ridge and LASSO

regressions.

The Factor Model approach takes a large cross-section of data and uses a technique like principal

components analysis to reduce the dimensionality of the problem. In our case, we concatenate five

to eight principal components based on the information criteria of the high dimensional data with

a lagged value of GDP and regress future GDP. We modified and used the code from FRED-QD

as our baseline Factor Model (McCracken and Ng, 2016). Here is the factor equation:

GDPt = β0 + β1 ∗GDPt−1 +

7∑
i=2

βi ∗ fit−1

Here the fit−1 are derived by using principal components on a large scale database of quarterly
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covariates from FRED-QD. While factor models models were extremely effective at shorter horizons,

they were also dependent on a large cross-section of economic data with a long history in a country.

In reality, only a few other developed countries have a cross-section of data that would be large

enough to permit using these models as effectively as can be used in the United States. A more

detailed explanation of these models is contained in Appendix D.

As is standard with economic forecasting, the baseline models were trained in a pseudo-out-of-

sample fashion where the training set/validation set expands as the forecast date becomes more

recent. However, with our neural network and AutoML, we keep the training set and validation

set fixed due to computational costs and programming constraints. We expect that our model will

improve if we use a pseudo-out-of-sample approach.

V. Data and Method

Discussing how we tested each class of model – reduced-form, structural, and machine learning

– we applied three datasets: a US-only dataset, a world-pooled dataset, and a world-pooled ex-

US dataset. This approach extends Lyu, Nie and Yang (2021), from an analysis of cross-country

pooling for factor models to an analysis across a wide range of economic models.

We split our data into training, validation, and test sets. The models would be estimated first on

only the 200+ US-only timesteps from 1951Q1-2008Q3 containing both a training and validation

set and evaluated on a US out-of-sample test set (2008Q4-2020Q1). Then the models would be

estimated on the 2300+ data points from 1951Q1-2008Q3 across 50 countries and evaluated on the

same US test set See Appendix A for the country list. For the US this data starts 1951Q1. For

all the other countries their data starts after 1951Q1, at varying times. The validation consisted of

data from 2003-Q4 to 2008-Q3, which was only used for the RNN, and for the LASSO selection.

This data was in the training set for all other models. Again US data was the only validation data

used.

For both the reduced form and structural models, we also tested the performance for the world

pooled data set ex US, so the training data contained no data from the US even though we were
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forecasting the same US GDP test set. Interestingly, this often improved forecasting and at worst

was statistically indistinguishable from forecasting from the entire world dataset, suggesting the US

in 2020 is much more similar to France in 2020, than the US in 1970, and using data outside the

US is a substitute that results in little forecasting loss.

AutoML, which was not a sequential model, used k-fold cross-validation on the entire training

set, comprised of the remainder of data excluding test or validation sets. Theory suggests issues

with this, but empirical tests justify the effectiveness even if the iid assumption of k-fold validation

on time series does not entirely hold (Bergmeir, Hyndman and Koo, 2018). Finally, we compare all

models, all horizons, pooled and US-only data, and SPF data and have a horserace – demonstrating

the best-performing models.

We chose these periods so that both the test set and the validation set would have periods of

both expansion and recession based on the US business cycle. Including the 2001 recession in the

validation set would leave the model without enough training data, so we split the data of the Great

Recession over the test and validation set. The quarter that bore the brunt of the fall of Lehman

Brothers and the largest dip in GDP was the first quarter in our test set, 2008-Q4. Two quarters

with negative growth preceding this were in the validation set. We estimated all models from a

horizon of one quarter ahead to five quarters ahead. The metric of choice for forecast evaluation

was RMSE. Additionally, all RMSE evaluations, unless otherwise noted, are on test data after using

both training and validation/cross-validation data.

The data used in the reduced form models was consumption, unemployment, and output data,

attempting to forecast GDP. US data is US only data from these three covariates and World data

comes from our entire cross-section of countries with the same three covariates. The out-of-sample

data attempts to predict US GDP, both without any data across countries from 2008Q4 to 2020Q1,

and also without any US data in any time-step. In some sense, this is both an out-of-sample

from a time-step perspective as well as a country perspective. We use these tests to determine

how applicable estimated parameters across countries hold up in a preliminary test of parameter

invariance. Additional robustness checks for reduced-form models is contained in Section VI.A..
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We sourced cross-country data from Trading Economics via the Quandl platform API 4 as well

as GDP data from the World Bank.5. We used GDP, consumption, and the unemployment rate as

inputs to the reduced form and machine learning models. GDP and consumption were all expressed

in growth rates. Unemployment was expressed as a rate as well. We selected these covariates after

using LASSO on the validation set to pick covariates most likely to be useful predictors. This data

was used both for the reduced-form models and the machine-learning ones. Regarding structural

models, since the Smets-Wouter model requires 12 different data series, we used a reduced set of

27 countries where we can find this data. Data came from the Federal Reserve Economic Data

(FRED), the World Bank, Eurostat, the Organization for Economic Cooperation (OECD) and the

International Monetary Fund (IMF). See the countries in Appendix A. In all cases including the

sturtural model, we only analyze GDP forecasting performance, however.

The out-of-sample data was the world-pooled training data with the US removed. Since the

main exercise is to forecast US GDP over the test set, this dataset both has no data on the country

being forecasted nor the timesteps that are being forecasted.

VI. Results

TWe show the results by model type: Reduced Form, Structural and Machine Learning. Then

we will put all models in a horserace along with the SPF.

VI.A. Reduced-Form Models

Figure III shows the forecasting performance of both VAR(1) or AR(2) models at a five forecast

horizons: 1-quarter ahead (H1) to 5-quarters ahead (H5). The stars next to the models’ name

indicate the statistical significance of world data outperformance over the US data using a Diebold-

Mariano test (Diebold and Mariano, 2002) at the 1% (***), 5% (**) or 10% (*) level. This format

will be followed throughout. Refer to Section V. for a description of the pooled and US data sets

4. https://www.quandl.com/tools/api
5. World Development Indicators, The World Bank
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Figure III: Forecast US GDP RMSE for Linear Models (AR(2) and VAR(1)) Using
Both US Only Data and Pooled World Panel Data for Five Time Horizons.

and Section IV. for a description of the models.

Pooling improved the performance of the models in a statistically significant manner, especially

at longer horizons. Except for a slight underperformance at one quarter ahead for the AR(2),

all other horizon models show outperformance using the country panel data augmentation. The

outperformance of the pooled data averages roughly 12% of US RMSE over all horizon-model pairs.

Figure IV: Forecast US GDP RMSE for Linear Models Using US Only Data,
Pooled World Panel Data, And US Forecast with World Data Excluding US Data

Figure IV shows similar data to Figure III, except the third bar for each horizon-model triplet
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shows the RMSE of a model forecasting US GDP that has neither time series data after 2008Q4,

nor US data over any period. This test enables us to show that using panel data can lead to models

that are policy/country invariant and can generalize even to country data that the model lacked

access to. This is labeled the Out-of-Sample data. In all cases, the RMSE of the world ex-US

data forecasts was statistically indistinguishable from the RMSE of the model estimated on the full

world panel of countries, including the US. Thus we use stars to indicate statistically significant

out-of-sample forecast improvement over the US only data baseline. Excluding the H1 AR(2) pair

and using only the out-of-sample data led to capturing 79%, on average, of the outperformance of

the world panel over US-only data forecasts. It is interesting and suggestive that removing US data,

doesn’t statistically decrease the accuracy of forecast and suggests that US data is more similar than

not with other countries when it comes to forecasting GDP. We explore this country out-of-sample

test in Section VI.B. that discusses pooling for structural models and the Appendix (Section ??)

VI.B. Structural Models

The performance of our structural models demonstrates that this pooling of data likely leads to

performance gains across models, including DSGE models that should generalize to out-of-sample

data because of their resilience to the Lucas critique. Combined with the results using machine

learning models, our results make the case that model outperformance due to pooling helps the

ability to generalize and forecast generally across the structural models we tested.

Figure V shows the improved performance moving from US-only data to cross-sectional global

data:

The Smets-Wouters parameters that seemed to change the most – moving from US-only data

to world data – were the shocks and the moving averages of the shock variable, monetary policy

Taylor-rule variables, and variables governing wages and inflation. While the increasing variance

of the shocks did not affect expected forecasts due to certainty equivalence, the model is both

less confident and closer to correct when using pooled world data. Perhaps it is unsurprising that

variables focusing on monetary policy and inflation are different when estimated on world data.

Inflation, especially among rich developing countries, along with the monetary response to them,
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Figure V: Forecast US GDP RMSE for DSGE Models Using Both US Only Data
and Pooled World Panel Data for Five Time Horizons.

was a more pernicious problem outside the US than within (Azam and Khan, 2020). For more

information on the changes in structural variables when moving from US data to pooled world

data, see Appendix H.6.

Despite the increased uncertainty of the model as illustrated by the increase in the standard

deviation of the shocks, the parameters were more reliable when estimated with world data. The

improvement in RMSE averages over 25% over all horizons, more than double the percentage im-

provement for reduced-form models. Part of the outperformance was due to the weaker performance

of the models estimated on US data. This suggests that the Smets-Wouters model is no better at

generalizing across policy regimes or countries than reduced-form models and benefits more, by

generalizing better, because of its higher parameter count.

In Figure VI, we also provide a structural chart that parallels the out-of-sample chart in Figure

IV. As mentioned in the methods, this removes US data from the world cross-sectional data set but

still attempts to forecast US GDP. This doubly out-of-sample data led to 9% better performance on

average than the performance estimated on the entire world data. However, the Diebold-Mariano

tests are less significant with only the first two horizons having p-values with less than 1% and

no significance in horizons four and five. This is interesting as although the world ex-US data set

has fewer data points, it seems to lead to better predictions of US GDP. As the US is the only
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Figure VI: Forecast US GDP RMSE for DSGE Models Using US Only Data, Pooled
World Panel Data, And US Forecast with World Data Excluding US Data

country whose data extends to the early 1950s, dropping data further back in time may improve

performance. While more data is generally better, it seems like more cross-sectional data of more

recent vintage improves forecast more, but more data further in time, even for the forecasting

country of interest, could hurt forecasting performance. The US in 2020 may be more similar to

France in 2020, than the US in 1970. This could be due to the rise of the internet among other

changes in economies. Thus, in contrast to Pesaran and Smith (1995), DSGE parameters could be

more stable when using data across space than time. We examine this further in Appendix H.2.

VI.C. Nonparametric Machine Learning Models

Given the forecasting improvement for both the reduced-form and structural models and the

improving relative performance of complex models, we decided to test the performance of nonpara-

metric models that are even more flexible than the DSGEs and some of the larger VARs, using

both the US-only data and the cross-sectional world pooled data. We tested an RNN, as well as the

AutoML algorithm. While the performance improvement was less than the DSGE improvement

from pooled data, it still seems impressive given that the flexible models had much better baseline

performance even on US-only data. This again illustrates the trend that increased parameter count

leads to synergistic performance gains from pooling.
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The two charts below illustrate the performance of the RNN and AutoML models on both US

and pooled world data.

Figure VII: Forecast US GDP RMSE for RNN Models Using Both US Only Data
and Pooled World Panel Data for Five Time Horizons.

The RNNs GDP forecasting improvement from US-only to World data in Figure VII was statis-

tically significant for all horizons except five quarters ahead. The average improvement was around

23% over all horizons, which was similar to the improvement for the Smets-Wouters model and

almost double the improvement of linear models. This is a reassuring confirmation as the RNN is a

data-hungry model that benefits more from data-rich regimes. We also attempted to add a country

identifier term to our model. For example, we used GDP per capita at the time of prediction as

an input to localize the pooled data to some degree. While this might be expected to reduce bias,

it didn’t improve out-of-sample performance to any degree. This suggests that countries are more

similar than different and the bias of pooling different countries has a limited negative effect, while

adding in such a covariate leads to a greater risk of overfitting.

Figure VIII shows the same performance graph for AutoML. The performance gain is not as

easily interpreted as AutoML benefits from the pooled data but can also pick different models that

gain relatively in both data-poor and data-rich regimes. Because of that, the large gains of the

RNN are more representative of performance gains from moving to pooled data on fixed Machine

Learning models. It has the least improvement in performance when using the panel of countries
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Figure VIII: Forecast US GDP RMSE for AutoML Models Using Both US Only
Data and Pooled World Panel Data for Five Time Horizons.

as training data, with average improvements in RMSE of about 7.5%. When estimated on world

data, AutoML outperforms all Economic models on all horizons except three quarters ahead.

VI.D. Summary

The previous sections outlined the performance of all reduced-form, structural, and machine

learning models. This section takes all the data and provides results from a holistic perspective.

We first compare forecasting models using all approaches, estimated on both pooled and US data.

Table ?? demonstrates the effectiveness of the machine learning forecasting methods in data-rich

regimes. We do not report the maximum likelihood of the Smets-Wouters model, as the original

Bayesian parameterization has better performance than either of our maximum likelihood Smets-

Wouters models estimated on world or US data. Introducing our other DSGE variations would be

difficult to justify and would also have no effect on the results of the horse race. Regardless, all of our

models that outperform the baseline models on a horizon are bolded. The best-performing model

along all horizons was either an AutoML model or an RNN model, likely because the additional

pooled data allowed a more powerful model to be used without overfitting.

For an additional discussion on how cross-sectional world pooled data and US data differentially

affect the model based on size, see Appendix H.3.
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TABLE I: US GDP RMSE Horserace of the RNN, AutoML, and Baseline Economic
Models on Both US Data and World Data

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
VAR(4)
US Data 2.99 3.03 3.10 3.08 3.08
World Data 2.37 2.52 2.56 2.63 2.63
AR(2)
US Data 2.53 2.88 3.03 3.14 3.13
World Data 2.57 2.62 2.67 2.72 2.72
Smets-Wouters DSGE Bayesian
US Data 2.79 2.95 2.89 2.80 2.71
Factor
US Data 2.24 2.48 2.50 2.67 2.86

RNN (Ours)
US Data 3.46 3.37 3.01 3.23 3.30
World Data 2.35 2.52 2.50 2.62 2.60
AutoML (Ours)
US Data 2.41 2.58 2.71 2.45 2.92
World Data 1.97 2.32 2.59 2.62 2.61

SPF Median 1.86 2.11 2.36 2.46 2.65

VII. Conclusion

In this paper, we show how estimating Macroeconomic models on a panel of countries, as

opposed to a single country, can significantly improve forecasting. Using a panel of countries as

a training set, we statistically improved the RMSE performance of reduced-form models – AR(2),

VAR(1), and VAR(4) – by 12% on average. We further show that we can make these reduced-form

models more policy/country invariant, suggesting that these models can learn to generalize GDP

forecasting even to countries the model has never been trained on.

We also showed that a similar training set of a panel of countries can improve the external validity

of structural models which again are typically estimated only on a single country of interest. We

focus on the Smets-Wouters model (Smets and Wouters, 2007). Using a panel of countries improves

the forecasting performance of the Smets-Wouters model estimated with maximum likelihood by

roughly 24% averaged across horizons. These results are again statistically significant for most time

horizons. We then demonstrated that we can again improve policy invariance and generalization to

out-of-sample countries by using a panel of countries in our training set. Additionally, we addressed
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one potential roadblock to the adoption of pooling country data, which is the fact that the structural

parameters may not be stable across countries and hence the pooled parameter value can only be

interpreted as a mean value. While our results are less conclusive on this front, we argue that based

on forecasting exercises, parameter generalization and stability are likely as good across space as

across time. Finally, concluding our section on structural models, we capitalize on the consistency of

improvements and discuss the likelihood that our results will extend to other estimation techniques

like the generalized method of moments, calibration, and Bayesian approaches.

Our last set of results recognizes that our dataset has increased from 300 timesteps to around

3000 timestep countries, showing that nonparametric Machine Learning models are able to outper-

form all the Economic baseline models even after being estimated in this more data-rich regime.

Our RNN outperforms all Economic baselines for horizons longer than two periods ahead. Likewise,

our AutoML model outperforms all baselines for all horizons except for the three quarters ahead.

Combined, the best-performing model over all horizons is either an AutoML or an RNN model,

which suggests there is likely much more room to test other nonparametric models in the more

data-rich Macroeconomic regime.

24



References
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A Appendix

A Selected Countries

Countries in reduced-form data set: Australia, Austria, Belgium, Brazil, Canada, Switzerland,

Chile, Columbia, Cyprus, Czech Republic, Germany, Denmark, Spain, Estonia, European Union,

Finland, France, Great Britain, Greece, Hong Kong, Croatia, Hungry, Ireland, Israel, Italy, Japan,

Korea, Luxembourg, Latvia, Mexico, Mauritius, Malaysia, Netherlands, Norway, New Zealand,

Peru, Philippines, Poland, Portugal, Romania, Russia, Singapore, Slovakia, Slovenia, Sweden, Thai-

land, Turkey, USA and South Africa.

Countries in structural data set: Australia, Austria, Belgium, Canada, Chile, Columbia, Ger-

many, Denmark, Spain, Estonia, Finland, France, Iceland, Israel, Italy, Japan, Korea, Lithuania,

Luxembourg, Mexico, Netherlands, New Zealand, Poland, Portugal, Slovakia, Slovenia, Sweden,

USA

B Selected Performance: Graphs

Figure IX: One Quarter Ahead - US GDP Forecasts

27



Figure X: Two Quarters Ahead - US GDP Forecasts

Figure XI: Three Quarters Ahead - US GDP Forecasts
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Figure XII: Four Quarters Ahead - US GDP Forecasts

Figure XIII: Five Quarters Ahead - US GDP Forecasts
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C Details on the Survey of Professional Forecasters (SPF)

While our model used the 2020 vintage data, in reality, the forecasters for the Survey of Pro-

fessional Forecasters were working with pseudo-out-of-sample vintages when forecasting over the

entire test. While reproducing this would be possible by using old vintages, it would require esti-

mating the model at every time step of the test set as the data would change every period. We

wanted to avoid this pseudo-out-of-sample forecasting as it would result in estimating 4600 models

instead of 100 at each horizon. Beyond this, the benefit of this increased computation was not clear

as we would still be using 2020 vintage data for countries outside the US, for which old vintages

are difficult to find. So, it was easier to compare the SPF performance on the 2020 vintage. In

addition, all our baseline models including world forecasts were estimated and evaluated using the

2020 vintage as well. This choice allowed us to compare the SPF performance with the performance

of all the baseline models.

D Detailed Description of Economic Baseline Models

The first model we use is the autoregressive model, AR(n). An oft-used benchmark model, it

estimates a linear relationship using the independent variable lagged N times. In terms of forecasting

ability, this model is competitive with or outperforms the other Economic models in our tests which

is consistent with Diebold (1998). We used an autoregressive model with two lags and a constant

term.

Additionally, we compared the Smets-Wouters 2007 model (Smets and Wouters, 2007), as DSGE

models share many similarities with Recurrent Neural Networks and Smets-Wouters (2007) suggests

that this particular model can outperform VARs and BVARs in forecasting. When running this, we

used the standard Smets-Wouters Dynare code contained in the published paper’s data appendix.

We take the point forecasts from the Smets and Wouters (2007) and use that to forecast. Like

Smets and Wouters (2007), we use Dynare (Adjemian et al., 2011) to solve and estimate the model.

A final model we included in our baseline Economic models was the Factor Model (see Stock

and Watson (2002a) and Stock and Watson (2002b)). In short, the Factor Model approach takes
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a large cross-section of data and uses a technique like principal components analysis to reduce the

dimensionality of the problem. In our case, we concatenate five to eight principal components

based on the information criteria of the high dimensional data with a lagged value of GDP and

regress future GDP. We modified and used the code from FRED-QD as our baseline Factor Model

(McCracken and Ng, 2016). While these models were extremely effective at shorter horizons, they

were also dependent on a large cross-section of economic data with a long history in a country. In

reality, only a few other developed countries have a cross-section of data that would be large enough

to permit using these models as effectively as can be used in the United States. That being said,

factor models do outperform our neural networks at shorter time intervals, and we imagine there

is promise in combining the factor approach with a RNN or AutoML approach.

We also tested the the forecasting performance of vector autoregressions (Sims, 1980). In addi-

tion to displaying performance in our main table, we compared this model and the AR(2) in our 50

countries cross-section test as well. Since we were only forecasting GDP, the vector autoregressive

models used lagged GDP, consumption, and unemployment to forecast the single GDP variable.

All the economic models were estimated on US GDP as is standard. While we ran preliminary

tests on estimating these models on our cross-section of 50 countries, we ran into issues with

estimating both Factor Models and DSGE models this way. However, preliminary results on the

AR(2) model suggest there could be some improvement to using a cross-section even on a three-

parameter AR(2) model. The improvement is not as large as the RNN, which is not surprising as

the RNN has more parameters to take advantage of a larger data set.

E The Rectified Linear Unit

A nonlinearity used in our architecture, but not in the GRU layers, is the rectified linear unit

(ReLU) (Agarap, 2018). The rectified linear unit is defined as:

ReLU(x) = max(0, x)(20)
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The ReLU is the identity operation with a floor of zero much like the payoff of a call option.

Despite being almost the identity map, this nonlinearity applied in a wide enough neural network

can approximate any function (Hornik, Stinchcombe and White, 1989).

F Skip Connections and Batch Norm

Skip connections (He et al., 2015) allow the input to skip the operation in a given layer. The

input is then just added onto the output of the skipped layer, forming the final output of the

layer. This allows the layer being skipped to learn a difference between the “correct” output and

input instead of transforming the input to output. Additionally, if the model is overfitting, the

neural network can learn the identity map easily. Skip connections are used when the input and

the output are the same dimension which allows each input to correspond to one output. Because

our network does not have this property, we learn a linear matrix that converts the input to the

output dimension. All the skip connections are linear operations and have no activation or batch

norm, which differs from the pair of dense layers at the beginning of the network, which have both

batch norm and rectified linear unit activations.

Batch normalizing (Ioffe and Szegedy, 2015) is used to prevent the drift of output through a

deep neural network. Changes to parameters in the early layers will cause an outsized effect on the

output values for the later layers. Batch norm fixes this problem by normalizing the output to look

like a standard normal distribution after the output of each layer. Thus, the effect of changes in

parameters will not greatly affect the magnitude of the output vector because, between each batch,

the data is re-normalized to have a mean of 0 and a standard deviation on 1.

G Adam Optimizer

Adam (Kingma and Ba, 2014) combines momentum (Polyak, 1964), a technique that uses recent

history to smooth out swings orthonormal to the objective direction, with RMSprop (Tieleman and

Hinton, 2012), a technique used to adjust step size based on gradient volatility.
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Traditional gradient descent hill climbing updates the parameters with a single equation:

θt = θt−1 − λ ∗ ∇θLθ(x, y)(21)

Here ∇θLθ(x, y) denotes taking the gradient of the loss with respect to θ, the parameters of the

model. For convenience, I will denote this term gt. By subtracting the gradient multiplied by a

small step size, λ, one moves the parameters, θ, in the direction that reduces the loss the most.

If we wanted to use information from the second derivative to inform optimization, we can use

Newton-Raphson instead:

θt = θt−1 −H−1t ∗ gt(22)

This uses the Hessian to determine an optimal step size based on steepness in the loss function.

Typically, this approach is not used in deep learning as deep learning models typically have a large

number of parameters, and calculating the Hessian has a quadratic cost in the number of parameters

and inverting also has a super-linear cost. However, there are quasi-Newton methods that attempt

to approximate the Hessian to determine the step size without the high computational cost. Adam

is similar to these methods. The equations that define Adam are as follows:

νt = β1 ∗ νt−1 − (1− β1)gt(23)

st = β2 ∗ st−1 − (1− β2) ∗ g2t(24)

δθt = −η νt√
st + ε

∗ gt(25)

θt+1 = θt + δθt(26)

The first equation is a moving average of the gradient. This “momentum” term is used because

often in training the direction of the gradient would move nearly perpendicular to the direction

of the optimum. Gradient descent would spend a lot of time zig-zagging while only making slow
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progress towards an optimum (see Figure XIV). Taking a moving average of previous gradients

preserves the principal direction while the orthogonal directions cancel each other out.

Figure XIV: Momentum

Likewise, the st equation is a moving average approximation for the Hessian (the second deriva-

tive). The approximate Hessian is used for adjusting the step size of the algorithm based on the

curvature of the loss function at a given point. β1 and β2 are hyperparameters – parameters that

have to be adjusted in a validation set rather than by derivative-based optimization – that determine

the smoothness of the moving average. Again, the resulting update term is applied to the previous

values of the parameters. This approach is empirically shown to lead to more stable optimization

and even better optima than simpler gradient descent approaches for large networks.

H Additional Forecasting Information

H.1 Linear Models GDP Forecast Performance Cross-Sectionally Tested Across Coun-

tries Over the Entire World

We performed the same tests over our entire cross-section of countries, shown in Table H.1 For

example, for each local forecast, we used only French data to forecast French GDP. With world

data, we estimate a single model with all the data and use it to forecast every country and average

the RMSE. For the out-of-sample data, we estimate a new model for each country that takes every

country’s data into account except for the country whose GDP data we are forecasting.

This data is analogous to the world data ex-US in the other exercises and is both time-step out-
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TABLE II: Average Linear Models GDP Forecasting Performance (RMSE)
Evaluated over US, the World, and Out-of-Sample Data With a GDP Test Set

Extending Over The Entire World

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
AR(2)

Local Data 5.22 5.33 5.51 5.56 5.60
World Data 4.88 4.98 5.10 5.19 5.19
Out-of-Sample Data 5.07 5.13 5.36 5.36 5.38

VAR(1)
Local Data 5.10 5.17 5.19 5.29 5.26
World Data 4.80 4.94 5.04 5.11 5.12
Out-of-Sample Data 4.92 5.00 5.07 5.20 5.25

VAR(4)
Local Data 7.90 7.05 7.74 7.87 9.27
World Data 4.72 4.90 5.03 5.10 5.11
Out-of-Sample Data 4.70 4.87 5.02 5.17 5.26

of-sample and country out-of-sample, so we call this data Out-of-Sample Data. This table provides

a strong robustness check for the idea that pooling data leads to better forecasts across the board

with more flexible models having much worse single-country results, but much better-pooled results.

However, large model pooled results outperform all models here.

Additionally, flexible models like the VAR(4) can predict a country’s GDP with indistinguishable

levels of accuracy whether that country’s data is included or excluded from the pooled world data

set. This plays into the idea countries are more similar across space, than going into a country’s

deep past time-wise. The correlation is somewhat nuanced, as only more flexible models seem to

be able to effectively adjust using world data as a proxy for the individual country data that is

being forecasted. This is evidence, that different countries are more similar than different when it

comes to the relationship between past and feature GDP forecasts and the same or very similar

parameters uniformly govern most countries’ data-generating process.

H.2 Removing Time-steps from Pooled DSGE Data

Probing the hypothesis that countries are more similar across time than than across space (same

country but long time lag between two pieces of time-series data) led to somewhat mixed results.
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We estimated a model trained on the entire panel of countries with data post 1995-Q1 onward.

This affected three countries – the US, Japan, and New Zealand. This procedure isolates more

sharply the effect of similarity across space versus across time on model generalization, rather than

just removing all US data. The US lost about 140-190 data points (as the test set requires rolling

forecasts), while New Zealand and Japan both lost about 15-60 timesteps. Figure XV, illustrates

this experiment to compare the performance of models estimated on data since 1995 to models

estimated with full country and timesteps.

Figure XV: Compares Parameter Stability via US GDP Forecasts Going Back in
Time (Out of Sample Datatset) Versus Space (1995+ Dataset)

The 1995 onwards data performed worse than the out-of-sample test which could suggest some

of the outperformance of the out-of-sample DSGE model was due to chance. However, it seems

that the 1995 data performed at least as well as a model estimated on world data both pre and

post-1995, despite our robust results suggesting that more data is generally better. This makes

sense when considering the advent of software, for example. The results seem inconclusive but

certainly don’t suggest any more parameter stability across time than space, in contrast to Pesaran

and Smith (1995) and generally accepted in the literature.
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H.3 Pooled Data and Model Size

To illustrate the effect that pooling data has on forecasting, we show a graph that orders RMSE

performance based on increasing model complexity with RMSE performance, comparing the trend

when estimated on US data versus pooled data. Even though the RNN nests the VAR(1), it

underperforms with US data, because it overfits the training data and performs worse on the test

set.

Figure XVI: As Model Complexity Increases, US GDP Forecast RMSE performance
Worsens Using Only US Data. However, This Trend Reverses Using World Data

Even if the RMSE decline in Figure XVI is less striking in pooled data, this decline is nevertheless

compelling. In fact, despite the appearance of only a small improvement due to model complexity,

the performance of the RNN on pooled data is state-of-the-art, while the performance of the AR(2)

on pooled data is pedestrian. The smaller improvements on pooled data are because even the AR(2)

on pooled data is already an accurate model. A similar story holds across other horizons with less

striking consistency compared to the one period ahead story.

H.4 Information Content Regressions

We regress true GDP on a varying collection of forecasts to test for statistically significant

contribution of a given forecast like our gated recurrent unit model. For example, Table III, attempts

to predict GDP from both the SPF forecasts and AutoML-H2O forecasts. The coefficients don’t
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mean much, but the statistical significance of each coefficient indicates that the given forecast adds

information on GDP forecasts above and beyond the other predictions. So SPF at one quarter

ahead adds information significant at the 1% level. Likewise, AutoML-H20 is also statistically

significant at that horizon, but no others.
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Here is the AutoML-H2O forecast compared to the SPF on the baseline test set ranging from

one-quarter ahead forecasts to five-quarters ahead:

TABLE III: AutoML-H20 Compared to SPF For Forecast from 1 to 5 quarters

Real GDP Growth

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

SPF 0.796∗∗∗ 1.554∗∗∗ 3.042∗∗∗ 2.888∗∗∗ 1.218
(0.238) (0.346) (0.607) (0.742) (1.025)

H2O 0.505∗∗ 0.564 0.511 0.213 0.337
(0.236) (0.399) (0.571) (0.669) (0.666)

N 46 46 46 46 46
R2 0.532 0.474 0.409 0.271 0.033
Adjusted R2 0.510 0.449 0.382 0.237 −0.012
Residual Std. Error (df = 43) 1.790 1.898 2.012 2.235 2.573
F Statistic (df = 2; 43) 24.464∗∗∗ 19.366∗∗∗ 14.879∗∗∗ 7.997∗∗∗ 0.743

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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The following table contains regressions comparing the information content of the H2O and

baselines, excluding the SPF:

TABLE IV: AutoML-H20, DSGE, AR(2), and Factor Models For Forecast from 1 to
5 quarters

Real GDP Growth

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

H2O 0.778∗∗∗ 1.385∗∗∗ 1.198∗ 0.665 0.151
(0.259) (0.427) (0.691) (0.779) (0.684)

DSGE 0.724 −0.041 0.138 0.047 0.081
(0.478) (0.581) (0.647) (0.679) (0.712)

AR2 −0.554 −1.102 −0.981 −0.797 −1.576
(0.438) (0.781) (1.759) (1.088) (1.634)

Factor 0.358∗ 0.657∗ 0.898 0.501 0.506
(0.188) (0.354) (0.539) (0.323) (0.463)

N 46 46 46 46 46
R2 0.501 0.291 0.127 0.070 0.031
Adjusted R2 0.453 0.222 0.041 −0.021 −0.063
Residual Std. Error (df = 41) 1.893 2.257 2.505 2.586 2.638
F Statistic (df = 4; 41) 10.307∗∗∗ 4.202∗∗∗ 1.485 0.767 0.329

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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This final table performs the same regression but has the SPF, H2O, and all baseline models:

TABLE V: AutoML-H20, DSGE, AR(2), Factor Models, and SPF For Forecast from
1 to 5 quarters

REAL

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

H2O 0.614∗∗ 0.629 0.495 0.233 0.254
(0.239) (0.403) (0.594) (0.693) (0.689)

SPF 1.071∗∗∗ 1.648∗∗∗ 3.085∗∗∗ 2.835∗∗∗ 1.256
(0.326) (0.394) (0.693) (0.776) (1.145)

DSGE 0.544 −0.141 −0.220 −0.332 −0.123
(0.433) (0.492) (0.542) (0.605) (0.734)

AR(2) −1.029∗∗ −0.981 0.776 −0.749 −1.672
(0.420) (0.660) (1.509) (0.954) (1.632)

Factor 0.003 0.115 0.101 0.321 0.418
(0.201) (0.326) (0.481) (0.287) (0.469)

N 46 46 46 46 46
R2 0.607 0.506 0.416 0.302 0.059
Adjusted R2 0.558 0.445 0.343 0.215 −0.058
Residual Std. Error (df = 40) 1.701 1.907 2.074 2.267 2.632
F Statistic (df = 5; 40) 12.363∗∗∗ 8.208∗∗∗ 5.697∗∗∗ 3.467∗∗ 0.505

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

None of the models except the SPF have consistent statistically significant information above

and beyond the other models.
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H.5 Bias and Variance in the Forecasting Models

The following table contains the mean bias as well as the variance of the models. For the gated

recurrent unit, we use the median forecast:

TABLE VI

Forecast Bias

(1-Qtr) (2-Qtrs) (3-Qtrs) (4-Qtrs) (5-Qtrs)

GRU Bias 0.459 0.480 0.506 0.620 0.644
Variance 5.51 6.34 6.23 6.85 6.75

AutoML-H2O Bias 0.293 0.511 0.833 0.723 0.422
Variance 3.86 5.36 6.70 6.88 6.80

SPF Bias 0.331 0.600 0.723 0.804 0.901
Variance 3.48 4.46 5.57 6.07 7.04

DSGE Bias 1.75 1.93 1.88 1.78 1.65
Variance 9.32 10.77 10.76 10.42 9.99

AR2 Bias 0.404 0.389 0.431 0.472 0.481
Variance 6.61 6.88 7.12 7.40 7.41

VAR4 Bias 0.233 0.214 0.201 0.200 0.195
Variance 5.63 6.36 6.56 6.89 6.91

Factor Bias 0.432 0.163 0.459 0.533 0.699
Variance 5.03 6.17 6.26 7.12 8.19
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H.6 Parameter Comparison across US DSGE Model and World DSGE Model

The table shows the parameters of the DSGE model estimated on world data versus US data

as well as the standard deviations of the parameters over time. This illustrates the important

parameters that change when adding in global data. In addition to the model growing less confident

and more accurate when world data is added, the parameters that are most modified are parameters

governing wage stickiness and inflation.
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Dynare Variable Variable Description World Param Values US Param Values World Standard Deviation US Standard Deviation
’ea’ Factor Productivity Shock Error 0.976842 0.474861 0.034192 0.014886
’eb’ Risk Permium Shock Error 0.522046 0.260422 0.022821 0.115139
’eg’ Government Spending Shock Error 1.002773 0.659571 0.028303 0.017909
’eqs’ Technology Shock Error 1.377699 0.426465 0.114479 0.033718
’em’ Monetary Policy Shock Error 0.202341 0.209711 0.018569 0.005405
’epinf’ Inflation Shock Error 0.785736 0.184302 0.034779 0.019632
’ew’ Wage Shock Error 0.595469 0.316343 0.107472 0.023861
’crhoa’ AR Parameter on productivity Shock 0.997478 0.984393 0.002449 0.003019
’crhob’ AR Parameter on Risk Premium Shock 0.132395 0.383984 0.039344 0.332214
’crhog’ AR Parameter on Government Shock 0.984414 0.980403 0.009976 0.009258
’crhoqs’ AR Parameter on Technology Shock 0.688845 0.776188 0.109162 0.027836
’crhoms’ AR Parameter on Monetary Shock 0.30509 0.148434 0.02064 0.041207
crhopinf’ AR Parameter on Inflation Shock 0.611081 0.977832 0.032108 0.024071
’crhow’ AR Parameter on Wage Shock 0.982497 0.899716 0.010334 0.045943
’cmap’ AR Moving Average Error Term on Inflation 0.539008 0.875734 0.038097 0.058007
’cmaw’ AR Moving Average Error Term on Wages 0.970411 0.882725 0.011541 0.046395
’csadjcost’ Elasticity of the Capital Adjustment Cost 9.80101 8.15361 0.8643 1.03545
’csigma’ Elasticity of Subsitution 1.978862 1.895245 0.166713 0.253334
’chabb’ Habbit Formation 0.868449 0.663259 0.016705 0.173953
’cprobw’ Wage Flexibility Probability 0.930401 0.924096 0.028501 0.031956
’csigl’ Wage Elasticity of Labor Supply 1.749702 3.763315 0.471358 1.127552
’cprobp’ Price Flexibility Probability 0.945883 0.663557 0.005239 0.034912
’cindw’ Wage Indexation 0.01 0.635949 5.26E-18 0.14763
’cindp’ Indexation to Past Inflation 0.01 0.13723 5.26E-18 0.123999
’czcap’ Elasticity of Capital Utilization 0.364196 0.812247 0.194422 0.080674
’cfc’ Fixed Costs in Production 2.040895 1.93295 0.0107 0.141187
’crpi’ Taylor Rule Inflation 1 2.114895 0 0.321337
’crr’ Taylor Rule Interest Rate Smoothing 0.966891 0.912953 0.011906 0.016476
’cry’ Taylor Rule Output Gap 0.315889 0.118081 0.110856 0.063766
’crdy’ Taylor Rule Output Gap Change 0.024124 0.15335 0.006121 0.030106
constepinf’ Gap between Model and Observed Inflation 0.187268 1.240916 0.023902 0.2128
’constelab’ Gap between Model and Observed Labor 2.993805 0.640214 0.998992 1.963757
’ctrend’ Gap between Model and Observed Output 0.34744 0.426019 0.038315 0.026315
’cgy’ Productivity Shocks on Government Spending 0.480685 0.550493 0.058911 0.01411
’calfa’ Elasticity of Capital in Production Function 0.091021 0.212888 0.015633 0.02167
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I Selected Additional Information

I.1 Smets-Wouters Model: US Data vs. World Data

TABLE VII: Smets-Wouters Forecast US GDP RMSE: US, World, Out-Of-Sampe,
1995+, and Bayesian Model Estimates

The performance forecasts for the Smets-Wouters model on the test set 2009-Q1
to 2020-Q1 (Lower is better)

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Smets-Wouters DSGE Max Like

US Data 3.83 4.36 4.49 4.50 4.2
World Data 3.05*** 3.28*** 3.28*** 3.22** 3.16*
Out-Of-Sample Data 2.59*** 2.75*** 2.89** 3.04 3.18
1995+ 2.77*** 3.09** 3.22* 3.26 3.28

Smets-Wouters DSGE Bayesian
US Data 2.79 2.95 2.89 2.80 2.71

∗ Significance indicates outperformance of world data models over US data models

I.2 Recurrent Neural Network Robustness Checks

For our RNN model, we found we could improve forecasting performance by taking the mean

prediction of many models estimated by stochastic gradient descent. The ensembling improves

performance slightly, but later graphs will show it also improves model stability and variance.

Bolded entries indicate outperformance over all Economic models.

TABLE VIII: GRU Mean, Median and Best GDP Forecasts, RMSE

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
GRU with World Data

Best Model 2.4 2.5 2.5 2.6 2.6
Mean Model 2.3 2.5 2.5 2.6 2.6
Median Model 2.3 2.5 2.5 2.6 2.6

We provide a Monte Carlo simulation (Table IX), estimating our RNN model at each time

horizon 100 times. At every horizon, the average root mean squared error of our simulated models

indicates competitive, if not outperformance, against baseline models. Interestingly, it seems like
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the best-performing model on validation data, when tested on the test data, often performs worse

than the average performance over all the models. This is something that should be investigated

further, but based on this phenomenon, we recommend that practitioners take a simple mean or

median forecast across many different models.

TABLE IX: Baseline GRU Monte Carlo Simulation over Initializations

The mean and standard deviation of the performance of GRUs on the test set
2009-Q1 to 2020-Q1

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Mean RMSE 2.4 2.6 2.5 2.6 2.6*
Std Dev RMSE 0.06 0.06 0.05 0.06 0.06

A common criticism of deep learning attempts at forecasting is that the models are unreliable,

but due to high variance, one can p-hack a model that performs well. The Monte Carlo simulation

in Table IX, anticipates this critique. The standard deviation of our RMSE is 0.06 which suggests

that all our models have a similar performance on the test set when optimization is complete. This

cannot resolve all issues, as the Monte Carlo result only deals with numerical instability. The model

could still fit this particular data window or architecture choice, due to chance. In order to respond

to those critiques, we also provide robustness checks across different architectures and data periods.

One test we performed was to replace the GRU with a long short-term memory (LSTM) layer

(Hochreiter and Schmidhuber, 1997b) – another type of RNN. We use the same test data as the

main result (USA 2009-Q1 to 2020-Q1) as well as the same data as inputs. The LSTM in Table X

are analogous to the gated recurrent unit neural networks models in the table in Section VI.C. in

the main text. Mean RMSE and standard deviation RMSE correspond to the entries in the table

below. The baseline performances are still the same as the test set has not changed.

The LSTM networks outperform the baseline models along essentially the same time horizons.

Performance is also competitive, but consistently a little worse than the gated recurrent unit over

all time frames. The LSTM has a similar standard deviation of root mean squared error, suggesting

that the two models consistently find a similar optimum when it comes to forecasting. Again, taking

a model average through the mean or median forecast results in small but consistent root mean
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TABLE X: Baseline LSTM Monte Carlo Simulations

The performance of the best, mean, and median forecasts as well as the mean and
standard deviation of the long short-term memory networks on the test set

2009-Q1 to 2020-Q1 (lower is better)

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Best RMSE 2.4 2.6 2.6 2.6 2.6*
RMSE of Mean 2.4 2.6 2.5 2.6 2.6*
RMSE of Median 2.4 2.5 2.5 2.6 2.6*
Mean RMSE 2.4 2.6 2.5 2.6 2.6*
Std Dev RMSE 0.05 0.07 0.05 0.06 0.06

squared error performance improvements.

Additionally, we re-estimate the model with the slightly different test set from 2009-Q4 to 2019-

Q4 as opposed to 2008-Q4 to 2020-Q1, comparing the benchmark economic models to our original

GRU (Table XI). The reason we use this alternative training set is that it contains no recessions.

Since the highly flexible neural network will have an advantage in forecasting periods with a sig-

nificant departure from a more linear-friendly period of expansion. Removing the recessions would

hamstring our model compared to the more linear model baselines.

Our gated recurrent units were completely re-estimated as we additionally included 2009-Q1 to

2009-Q3 in the validation set. Performance would improve if we left those (recession) timesteps

out of the validation set as the test set contains no recessions. However, this decision cannot be

rationalized from the point-of-view of an out-of-sample forecaster. Although this version of our

model did not outperform the best baseline models along any horizon, considering performance

over all horizons, we think our median and mean models are better than the US AR(2), VAR(1),

and the Factor Model on this test set, while performing slightly worse than the DSGE model and

the world AR(2). This supports our hypothesis that the main outperformance of our model was in

highly nonlinear domains like recessions and other regime changes although using the cross-sectional

data reduced the tendency for the models to be biased upwards and was a contributor to the RNN’s

outperformance over models trained only on US data.

This provides supplementary evidence that the outperformance of our neural network is not

due to either over-fitting the test set or over-fitting the architecture choice. Additionally, we ran
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Monte Carlo simulations (Table XII) which show that given one hundred random initialization and

optimization routines over all five horizons, the model still consistently achieves low root mean

squared error and has a low standard deviation – demonstrating stability and reproducibility.

TABLE XI: Expansion Root Mean Squared Error

The RMSE Performance of Each Model Only on US Expansion Data

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
VAR(1)

US data 2.3 2.6 2.9 3.0 3.0
World data 2.1 2.2 2.2 2.2 2.2

AR(2)
US data 1.7 1.7 1.8 1.9 1.9
World data 1.6 1.6 1.6 1.5 1.5*

Smets Wouters DSGE
US data 1.8 1.8 1.7 1.6 1.5*

Factor
US data 1.6 1.6 1.6 1.9 2.1

GRU*
Best 1.8 2.3 2.0 2.0 1.9
Mean Forecast 1.7 1.7 1.7 1.7 1.7
Median Forecast 1.7 1.7 1.7 1.7 1.7

SPF Median 1.4 1.5 1.5 1.5 1.5

∗All RNN models use entire world data cross-section
Table XI, discusses forecast prediction only in expansions. (Lyu, Nie and Yang, 2021) suggest
pooling improves forecasting mainly in downturns. However, this chart shows other models,

especially the machine learning ones, can also improve in expansions.

TABLE XII: Expansion RNN Monte Carlo Simulations

The mean and standard deviation of the performance of gated recurrent units on
the test set 2009-Q4 to 2019-Q4

Time (Q’s Ahead) 1Q 2Q 3Q 4Q 5Q
Mean RMSE 1.8 1.8 1.8 1.8 1.7
Std Dev RMSE 0.18 0.18 0.21 0.11 0.08
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